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Disclaimer

» Background in statistics.
» Key research in detection and attribution (long term + extreme events).

» Not an expert of sensitivity =~ (ECS, TCR, others).

Statistical constraints Aurélien Ribes



Introduction Review of constraints Historical warming and TCR Statistical syntheses Conclusion
0000 0000000 000000000 000000 o]

Sensitivity

« ECS: Equilibrium Climate Sensitivity
GSAT Warming at 2x [CO5] (equilibrium)
Variations between S, ECS, ESS (cf Jean-Louis, Sherwood et al.).

CMIPS models, RCP scenarios Réchauffement global moyen
(2081-2100 vs 1986-2005)

RCP 2.6 (26 o s

RCP 45 (32) RCP8.5:2.6°C-4.8°C

RCP 6.0 (17)
— RCP85(30)

+ TCR : Transient Climate Response
GSAT warming at 2x [CO5] in 1%CO, runs (out of equilibrium).

« TCRE : Transient Climate Response to Emissions ‘ = rer2si0sc-17C
GSAT warming induced by 1000 GtCO..
Concentration based vs emission based points of view. 4

10‘00 ‘V‘)SO 70‘00 ' 2050 2100
. e s Year Graphique : Knuti & Sedlacek, 2012
« Hydrological sensitivity, Chiffres : GIEC, 2013

e.g., Allan et al., 2020

Global surface warming (°C)

GSAT: Global mean Surface Air Temperature
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Estimating ECS

» Purely Models (GCMs):
model estimates, process based estimates

» Purely Observations:

« Historical period: energy budget approach (Benoit),
» Paleoclimate (Pascale).

» Constraints (emerging / observational)
narrow model range using some observations,

1. Processes-based,
2. Historical warming (incl. attribution studies),

- Syntheses — combining all lines of evidence.
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Estimating ECS

+ Purely Models (GCMs):
model estimates, process based estimates
» Purely Observations:

« Historical period: energy budget approach (Benoit),
» Paleoclimate (Pascale).

» Constraints (emerging / observational)
narrow model range using some observations,

1. Processes-based,
2. Historical warming (incl. attribution studies),

- Syntheses — combining all lines of evidence.

Constraints use the (limited) CMIP ensemble as a training sample.

So, all constraints rely on the underlying models somehow.
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The CMIP ensembles

Coordinated experiments involving ~ 40 models
worldwide.
Large international effort!

GMMIP,
PMIP HighResMIP

REMIP, DAMIP, OMIP, FAFMI/
ViMIP. Saie/:

1SMIPS

AerChemMIP Impacts

camp
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Outline

1. Review of constraints
2. Historical warming and TCR

3. Statistical syntheses

a. Sherwood et al. (2020)
b. IPCC AR6

4. Conclusion
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Outline

1. Review of constraints
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(2014) Spread in model climate

traced to atmospheric convective mixing, Nature.
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Principle

Emergent constraint on long—term cauhng/lo SRM-SAI 7SRM*SAI cooling constrained by volcanic eruptions
Foolommen o/ a
= i Vi After volcanic constraint
. . = >3 ;
» Find a variable X related to the ESC S, e.g. % o7 / z oo ensemtie
E o054 - { r= 083 ‘E .
S=aX+b+e 2 5
£ 05 ol e O CanEsmz o
2 =7 * CNRM-ESM1 S
. E4 n i Fadcevees S
+ Estimate (a,b) from an ensemble of models z 041 JNmocEsy
(CMIP), Goaf 7| sl LA -
0.1 0.2 0.3 0.4 05 0.0 0.2 0.4 0.6 0.8 1.0
» Take an observed value for X (+ uncrty): X, +¢o, Volcanic-SAI sensitivity, Wy (K W) SRM-SAI sensitivity, Weay (K W)
* Derive arevised estimate for real worl sensitivity:
From Plazzotta et al., 2018, GRL
S=3aXo+ b (e + aso).
People often neglect uncertainty in (, b). Requirements:

+ Relationship between (X, S) [+ phys. underst.]
» Observational estimate of X (not too uncertain).
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Catalog

Large diversity of observational constraints — see e.g., IPCC AR6, Ch7, 7.5.4 (and earlier studies).

» Mean climate characteristics e.g. seasonal cycle in surface temperature (Knutti
et al.,, 2006, JClim),

» Feedback processes, e.g., tropical low-clouds, albedo, etc (Sherwood et al.,
2014, Brient et al., 2016, Zhai et al., 2015),

« Interannual variability (Cox et al., 2018),

» Observed temperature change, historical or paleo (see later).
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Catalog (2) — Knutti et al. (2017)
atalog nutti et al.
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From Knutti et al., 2017, NGeo.
o = = = = 9Dac
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But...

Some constraints found in CMIP5 do not hold in CMIP6.

Schlund et al., 2020, ESD

“CMIP6 data shows a decrease in skill and statistical significance of the
emergent relationship for nearly all constraints, with this decrease being
large in many cases.” Also Caldwell et al., 2018.

Statistical constraints
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Why this happened?

Stats point of view:
» High dimension problem.
* Small training set.

» Risk of cherry picking — which maybe actually oc-

curred.

» Solutions could include a more comprhensive explo-

ration of uncertainties.

Phys. point of view:

Historical warming and TCR

Statistical syntheses Conclusion
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The dark side of CMIP:

* Too small

* non-independent (cousin)

» no effort to sample uncertainty

See 'Ensemble of opportunity’ literature.

* Need of “independently verifiable physical mecha-

nism”,

« Many constraints apply to one single process / feed-

back.

Statistical constraints
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In IPCC AR6

» Cloud feedbacks: not taken into account

Constraints usually applies to one process / feedback / type of clouds; other feedbacks can be biased too...

+ Climatology: not taken into account
“the physical relevance [...] is unclear”
“these constraints are not considered reliable”

« Historical warming [next]: taken into account :-)

Statistical constraints
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Outline

2. Historical warming and TCR
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About historical warming
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About historical warming

Issues: various forcings (GHGs vs AER, various GHGs); out of equilibrium state.
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About historical warming

Issues: various forcings (GHGs vs AER, various GHGs); out of equilibrium state.

Statistical constraints Aurélien Ribes



Conclusion

Introduction Review of constraints Historical warming and TCR Statistical syntheses
0000 0000000 00000000 000000 o]
About historical warming
Global
(a) OBS (b) ALL

20 b) kg\?ﬁz 5"?2?:5:.?‘
- Sl \k’;:m\

Issues: various forcings (GHGs vs AER, various GHGs); out of equilibrium state.
Aurélien Ribes
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Attribution approaches

Try to estimate contributions from subsets of forcings, e.g., ANT/NAT, or better GHG/AER/NAT.

Key approach based on (variants of) linear regression:

+ Philosophy:
k ) The response patterns X are perfectly known.
Ye=>8X" +es,  Cov(e) =%, Amplitude of the responses are not
i=1

 ¢: location (space-time),
* Bsue Can be use to correct (rescale) model results.

» Y: observations (space-time vector), AZR approach : ilustration

+ B;: scaling factor (scalar), unknown,
« X(): expected response to forcing i (space-time vec-

tor), known, . But:
+ e: internal variability (space-time vector), - separating GHG and AER is hard (Ribes et al.,
+ X: IV covariance matrix (matrix). 2013, IPCC AR5, etc).

« linear regression model is questionable.
e« k=2or3. 9 q
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Simple constraint

ARG novelty: Post-1980 trends almost un-

affected by AER.

cLmATOLOGY
Past warming trend constrains future warming
in CMIP6 models

Katarzyna B. Tokarska'*', Martin B. Stolpe'*, Sebastian Sippel', Erich M. Fischer',
Christopher J. Smith?, Flavio Lehner', Reto Knutti'

Future global warming but several the

latest Sixth Coupled Model ject (CMIP6) ey in-
He simulated

warming MIPS and CMIP6 model:

over 16.and 14% he raw CMIPG medi tively, and over by

090, relative to 1995-2014. i ith previ

based on CMIPS models, and
Paris Agreement target.

Key implications for TCR and projections.
Tokarska et al., 2020, Sciences Advances.
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Model weighting

(a) CMIP6 global temperature change 55 {b) CMIPG TCR (29 models)
Mean, 66%, 90% -
== Unweighted
= 55P1.2.6 weighted
= SSP5-8.5 weighted
== TCR weighted

Weight models according to independence and
performance

Liang et al., 2020, GRL
Brunner et al., 2020, ESD

-

w

‘Temperature change (°C) relative to 1995-2014
Transient Climate Response (*C)

-y
s

20412060 2081-2100
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Bayesian analysis (1)

/
4
3
S
2 2
X . 0
Try to estimate the forced response “given observa- o
tions”. 1
Ribes et al., 2021, Sci Adv. 0
T T T T T T
1850 1900 1950 2000 2050 2100
Year
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Bayesian analysis (1)

////
4
3
S
2 2
X . 0
Try to estimate the forced response “given observa- o
tions”. 1
Ribes et al., 2021, Sci Adv. 0
T T T T T T
1850 1900 1950 2000 2050 2100

Year
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Bayesian analysis (1)

///,

GSAT (°C)

Try to estimate the forced response “given observa-
tions”.

Ribes et al., 2021, Sci Adv.

T T T
1850 1900 1950 2000 2050 2100

Year
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Bayesian analysis (1)

GSAT (°C)

Try to estimate the forced response “given observa-
tions”.

Ribes et al., 2021, Sci Adv.

T T T
1850 1900 1950 2000 2050 2100

Year

» Which pathways are consistent with observations?
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Bayesian analysis (2)

x@h Y1850
X = : Y= :
xZlo Y019
Prior: X ~ N(pt, Zmod)s
Obs: y=Hx+e, with e~ N(0,Xqps),
We compute: p(x|y)

y: observations, 1850-2019,
3obs: Obs. error covariance,
e: error in obs. (i.v. + meas.),

x: forced response (1850-2100),
3 mod: Model error covariance,
H: observation operator,

There are 4 inputs: y, i, ¥mod, Xobs.  #Kriging, #KalmanfFiltering

Statistical constraints

Statistical syntheses
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Can be extended to TCR/ ECS

Xa//
( F ) ~ N(g; Bmog)-
log(—A)

+ TCR:1.33°C-2.36°C
+ ECS:22°C-4.6°C

Conclusion
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IPCC AR6 Synthesis (projections)

(a) Unconstrained CMIPS (b) Constrained CMIP6
s o

+ IPCC AR6 WG1 published in August 2021,

» GSAT? projections are model results constrained by

observations =
» Various methods used, incl. previous constraints, i = d (] )
EBMs, and others. N N
PR ! S g e
5 (c) Synthesis 5 (d) Assessed GSAT

Enuiao

* Results on TCR / ECS rely on a statistical relationship
with xAtL accross (CMIP) climate models.

rolatv t 19952014 (°C)

+ This relationship could be questioned — see pattern ef-
fect issue.

2

3

5

(0. 006i-0sa1

1

0
W0 22 A0 | 2602078

2812100

5 o g
EA S A

Fig 4.11 from IPCC AR6 (2021)

4Global mean Surface Air Temperature
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But... How about the pattern?

Turns out that...

CMIP5/6 abrupt CO, quadrupling CMIP5/6 1981-2014 SST trend Observed 1981-2014 SST trend

K/dec SST trend pattern - pattern N pattern

The observed pattern of warming is very different from that expected / simulated by models,
» What causes this pattern: forced response? (low-frequency) variability?

Statistical constraints Aurélien Ribes
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How does the pattern effect impact future warming?e
EBM response to historical and RCP8.5 EBM response to historical and RCP8.5
a _ forcing with CMIP5/6 parameters b _ forcing with EffCS = 2°C over 1981-2100
go g6
© Kyle Armour 4 B SST trend pattern since
B <« ~1980 continues
3 indefinitely
Models miss the recent . g
SST trend.

2000 2100

Year

1950 2050

EBM response to historical and RCP8.5

2000 2050
ear

1950 2100

EBM response to historical and RCP8.5

. n forcing with EffCS over 1981-2020 and forcing with EffCS over 1981-2020 and
ECS VS historical ¢ _ returning to CMIP5/6 EffCS values by 2060 d _ returning to GMIP5/6 EfICS values by 2100
warming relationship g6
potentially wrong. - 2
SST trend pattern Za SST trend pattern
relaxes to CMIP5/6 ~ ——> ot relaxes to CMIP5/6
patterns by 2060 z, patterns by 2100
£
g0
- - - | E
1950 2000 2050 2100 1950 2000 2050 2100
Year Year

Pattern effect Workshop, May 10-13, 2022
https://usclivar.org/meetings/pattern-effect-workshop—-agenda
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Outline

3. Statistical syntheses

a. Sherwood et al. (2020)
b. IPCC AR6
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M) Check for updates

ADVANCING

A
A Zme,

Reviews of Geophysics

REVIEW ARTICLE
10.1029/2019RG000678

Key Points:

+ We assess evidence relevant to
Earth's climate sensitivity S:
feedback process understanding and
the historical and paleoclimate
records

All three lines of evidence are
difficult to reconcile with § < 2 K,
while paleo evidence provides the
strongest case against § > 4.5 K

A Bayesian calculation finds a

6% range of 2.6-3.9 K, which
remains within the bounds 2.3-4.5 K
under plausible robustness tests

Correspondence to:
S. Sherwood,
ssherwood@unsw.edu.au

Citation:

Sherwood, S. C., Webb, M. J., Annan,
1.D.., Armour, K. C., Forster, P. M.,
Hargreaves, J. C., et al. (2020). An
assessment of Earth's climate sensitivity
using multiple lines of evidence.
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How does it work?

Lines of evidence:
*+ Process understanding, Eproc (blue)
+ Historical warming, Epis; (Orange)
+ Paleo records, Epeo (red)

P(A|E) p(/\|EPfOC)p(Ehist|>‘)p(Epaleo|>‘)
Somehow: take the intersection of all lines of evidence.

Statistical constraints

0@0000

Historical

()

Figure 2. A Bayesian network diagram showing the dependence
relationships between main variables in the inference model. Circles
show uncertain variables, whose PDFs are estimated; squares show
evidence (random effects on the evidence would appear as a second
“parent” variable for each square and are omitted for simplicity). Colors
distinguish the three main lines of evidence and associated variables
(blue = process, orange = historical, and red = paleoclimate). For
paleoclimate, only one AF/AT climate change pair is shown but two
independent ones are considered (see section 5).

Conclusion
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Process understanding

Quantify knowledge about each A; and AFyxco,:

* CO; radiative forcing: Afaxco,
and the associated radiative adjustments

» Planck feedback: Apjanck

» Water vapor and lapse rate: Ay 4/,

+ Surface albedo feedback: \a,

« Stratospheric feedback: Astrat,

+ Other feedbacks (chemistry, aerosols): Aoter,
+ Clouds !!

Statistical constraints

Historical warming and TCR Statistical syntheses Conclusion
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The cloud feedback is decomposed into:

HighCloud Afitude |
Tropical Marine Low-Cloud ——
Tropical AnvlCloud Avea | F—f—]
Land Cloud Amount H
Middle Latitude Marine Low Cloud Amount =
High Latitude Low-Cloud Optical Depth (]
Total Cloud Feedback |—+—|

High-cloud altitude feedback

Tropical anvil cloud area feedback

Tropical marine low-cloud feedbcak
Midlatitude marine low-cloud feedback
High-latitude low-cloud optical depth feedback
Land cloud feeback

Assessed Cloud Feedback Values

64 02 00 02 04 06 08
wm-ikt
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Prior on (S, )\)

Each Aj ~ N(pi,02) ; A ~ N( X i, 3 02).
Dependence between AFf,,co, and A: neglected.
Constraint on S and/or A,

(interannual radiation variability and climatology):

discussed but not taken into account (compensates potential
missing feedbacks ;).

+ Historical evidence

+ Paleoclimate evidence

Statistical constraints
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=

PDF for s (k)

-2
Mwm 2K

c3

10,

Likelihood

-2
Mwm k)

PDF for s (k)

3 T 3 3 i B 0 i
s

Figure 8. PDFs and likelihood functions based upon the assessment of
individual climate feedbacks and the emergent constraint literature.

(a) PDF for A from combining evidence on individual feedbacks using the
Baseline A, prior. (b) Emergent constraint likelihood for A. Note that this
likelihood is not a PDF. See section 3.6 for an explanation of how the
parameters of this likelihood function were determined and why they differ
from the parameters recorded in Table 2. (¢) PDF for § from combining
evidence on AF,co; and individual feedbacks using uniform 4 priors.
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1.0
—— Baseline 66%
—— Robustly >=66%
—— AR5 >=66%
0.8
—— Baseline PDF
—— Uniform S Prior
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“the paleoclimate record (in particular, the LGM)
now provides the strongest evidence against
very high S”

“all lines provide more similar constraints against
low S (paleo slightly less than the others)”

Still, the choice of the prior matters.

P(A|E) o< p(A|Eproc)p(Enist|A\)P(Epateol )
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Another synthesis (more qualitative)

“[Synthesis] can be done formally using
Bayesian statistics, though such a process
is complex and involves formulating likeli-

hoods and priors”
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(a) Equilibrium climate sensitivity estimates (°C)
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(b) Transient climate response estimates (°C)
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Conclusions / Perspectives

 Statistical constraints contribute to knowledge of climate sensitivity.

» Constraint from historical (recent) warming is important... And expected to strengthen.
» Need of statistical methods (uncertainty quantification, sophisticated constraints, synthesis...).
+ Key remaining issues include:

« Limitation of the CMIP ensemble. Use PPEs? (Perturbed Physics Ensembles)
» Pattern effect. Revise the role of internal variability?
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Conclusions / Perspectives

 Statistical constraints contribute to knowledge of climate sensitivity.

» Constraint from historical (recent) warming is important... And expected to strengthen.
» Need of statistical methods (uncertainty quantification, sophisticated constraints, synthesis...).
+ Key remaining issues include:

« Limitation of the CMIP ensemble. Use PPEs? (Perturbed Physics Ensembles)
» Pattern effect. Revise the role of internal variability?

Few personal thoughts: ECS has received very much attention, but...

» Highly idealized experiment
Keeping constant [CO,] on the long-term seems very unlikely

» Does not describe the response of the system that well...
Transient resp., local resp. (pattern), extreme events, water cycle, carbon cycle (e.g. emissions based), etc

» Many other features to infer / monitor — come to the workshop.
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