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Disclaimer

• Background in statistics.

• Key research in detection and attribution (long term + extreme events).

• Not an expert of sensitivity (ECS, TCR, others).
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Sensitivity

• ECS: Equilibrium Climate Sensitivity
GSAT Warming at 2x [CO2] (equilibrium)
Variations between S, ECS, ESS (cf Jean-Louis, Sherwood et al.).

• TCR : Transient Climate Response
GSAT warming at 2x [CO2] in 1%CO2 runs (out of equilibrium).

• TCRE : Transient Climate Response to Emissions
GSAT warming induced by 1000 GtCO2.
Concentration based vs emission based points of view.

• Hydrological sensitivity,
e.g., Allan et al., 2020

GSAT: Global mean Surface Air Temperature
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Estimating ECS

• Purely Models (GCMs):
model estimates, process based estimates

• Purely Observations:
• Historical period: energy budget approach (Benoit),
• Paleoclimate (Pascale).

• Constraints (emerging / observational)
narrow model range using some observations,

1. Processes-based,
2. Historical warming (incl. attribution studies),

• Syntheses – combining all lines of evidence.

Constraints use the (limited) CMIP ensemble as a training sample.
So, all constraints rely on the underlying models somehow.

The CMIP ensembles

Coordinated experiments involving ∼ 40 models
worldwide.
Large international effort!
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Outline

1. Review of constraints

2. Historical warming and TCR

3. Statistical syntheses
a. Sherwood et al. (2020)
b. IPCC AR6

4. Conclusion
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Spread in model climate sensitivity
traced to atmospheric convective mixing
Steven C. Sherwood1, Sandrine Bony2 & Jean-Louis Dufresne2

Equilibrium climate sensitivity refers to the ultimate change in global mean temperature in response to a change in
external forcing. Despite decades of research attempting to narrow uncertainties, equilibrium climate sensitivity
estimates from climate models still span roughly 1.5 to 5 degrees Celsius for a doubling of atmospheric carbon dioxide
concentration, precluding accurate projections of future climate. The spread arises largely from differences in the
feedback from low clouds, for reasons not yet understood. Here we show that differences in the simulated strength of
convective mixing between the lower and middle tropical troposphere explain about half of the variance in climate
sensitivity estimated by 43 climate models. The apparent mechanism is that such mixing dehydrates the low-cloud layer
at a rate that increases as the climate warms, and this rate of increase depends on the initial mixing strength, linking the
mixing to cloud feedback. The mixing inferred from observations appears to be sufficiently strong to imply a climate
sensitivity of more than 3 degrees for a doubling of carbon dioxide. This is significantly higher than the currently
accepted lower bound of 1.5 degrees, thereby constraining model projections towards relatively severe future warming.

Ever since numerical global climate models (GCMs) were first developed
in the early 1970s, they have exhibited a wide range of equilibrium
climate sensitivities (roughly 1.5–4.5 uC warming per equivalent doub-
ling of CO2 concentration)1 and consequently a broad range of future
warming projections, with the uncertainty due mostly to the range of
simulated net cloud feedback2,3. This feedback strength varies from roughly
zero in the lowest-sensitivity models to about 1.2–1.4 W m22 K21

in the highest4. High clouds (above about 400 hPa or 8 km) contribute
about 0.3–0.4 W m22 K21 to this predicted feedback because the tem-
peratures at the tops of the clouds do not increase much in warmer
climates, which enhances their greenhouse effect. Mid-level cloud
changes also make a modest positive-feedback contribution in most
models5.

Another positive feedback in most models comes from low cloud,
occurring below about 750 hPa or 3 km, mostly over oceans in the
planetary boundary layer below about 2 km. Low cloud is capable of
particularly strong climate feedback because of its broad coverage and
because its reflection of incoming sunlight is not offset by a commen-
surate contribution to the greenhouse effect6. The change in low cloud
varies greatly depending on the model, causing most of the overall
spread in cloud feedbacks and climate sensitivities among GCMs5,7.
No compelling theory of low cloud amount has yet emerged.

A number of competing mechanisms have, however, been suggested
that might account for changes in either direction. On the one hand,
evaporation from the oceans increases at about 2% K21, which—all
other things being equal—may increase cloud amount8. On the other
hand, detailed simulations of non-precipitating cloudy marine bound-
ary layers show that if the layer deepens in a warmer climate, more dry
air can be drawn down towards the surface, desiccating the layer and
reducing cloud amount8,9.

The lower-tropospheric mixing mechanism
We consider that a mechanism similar to this one, which has so far
been considered only for a particular cloud regime, could apply more
generally to shallow upward moisture transports, such as by cumulus

congestus clouds or larger-scale shallow overturning found broadly
over global ocean regions. Air lifted out of the boundary layer can
continue ascending, rain out most of its water vapour, and then return
to a relatively low altitude—or it can exit the updraught directly at the
low altitude, retaining much more of its initial vapour content. The
latter process reduces the ‘‘bulk precipitation efficiency’’ of convection10,
allowing greater transport of moisture out of the boundary layer for a
given precipitation rate. Such a process can increase the relative humidity
above the boundary layer11 and dry the boundary layer. Unlike the global
hydrological cycle and the deep precipitation-forming circulations12,
however, it is not strongly constrained by atmospheric energetics11.

We present measures of this lower-tropospheric mixing and the
amount of moisture it transports, and show that mixing varies sub-
stantially among GCMs and that its moisture transport increases in
warmer climates at a rate that appears to scale roughly with the initial
lower-tropospheric mixing.

Mixing-induced low cloud feedback
The resulting increase in the low-level drying caused by lower-tropospheric
mixing produces a mixing-induced low cloud (MILC) feedback of vari-
able strength, which can explain why low-cloud feedback is typically
positive5 and why it is so inconsistent among models.

In a GCM, vertical mixing in the lower troposphere occurs in two
ways (Extended Data Fig. 1). First, small-scale mixing of heat and water
vapour within a single grid-column of the model is implied by con-
vective and other parametrizations. Lower-tropospheric mixing and
associated moisture transport would depend on transport by shallow
cumulus clouds, but also on the downdrafts, local compensating sub-
sidence and evaporation of falling rain that are assumed to accompany
deeper cumulus. Second, large-scale mixing across isentropes occurs
via explicitly resolved circulations. Whether this contributes to lower-
tropospheric mixing will again depend on model parametrizations,
but in this case, on their ability to sustain the relatively shallow heating
that must accompany a shallow (lower-tropospheric) circulation. We
measure these two mixing phenomena independently, starting with

1Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney 2052, Australia. 2Laboratoire de Météorologie Dynamique and Institut
Pierre Simon Laplace (LMD/IPSL), CNRS, Université Pierre et Marie Curie, Paris 75252, France.
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respectively). These correlations suggest that the predictive skill of
LTMI arises from both subsidence and other regions; further work
is needed to better assess this. Cloud amount reduces more in high-
LTMI models both at low and mid-levels (Extended Data Fig. 3),
although the greater net radiative impact of low cloud makes its effect
dominant16. Previously reported water vapour and lapse-rate feed-
backs17 are, in contrast, not correlated with the LTMI.

Is the imputed lower-tropospheric mixing impact on low clouds
strong enough to explain the approximately 1.5 W m22 K21 spread of
cloud feedbacks seen in GCMs?4 One recent study18 imposed increased
surface latent heat fluxes in a large region typified by shallow clouds,
finding an increase in cloud-related net cooling of about 1 W m22 for a
2–3 W m22 increase in the surface flux, other things held fixed. An
even larger sensitivity, nearly 1:1, has been reported in a different
model for advective changes in moisture input19. If a similar but opposite
cloud response occurred for moisture removal by lower-tropospheric
mixing, then to explain the feedback spread, the boundary-layer drying
responses would need to span a range across models of about 3 W m22

per K of surface warming. This roughly matches the contribution to the
spread from Msmall alone (Fig. 2b). The additional drying response
from MLT, large was about 0.6 W m22 K21 greater in the high-D models
(mean D of 0.34) than in the low-D ones (mean 0.24), which, if rescaled
by the full spread of D in the full GCM ensemble, implies a further
source of spread in drying response of about 2 W m22 K21. We con-
clude that, even if not all low clouds are as sensitive as the ones exam-
ined in the cited studies, the lower-tropospheric mixing response is
strong enough to account for the cloud feedback spread and its typ-
ically positive sign5.

Why does moisture transport increase so strongly with warming?
The magnitude of these increases, typically 5%–7% per K of surface
warming, is roughly what would be expected if the circulations remained
similar against a Clausius–Clapeyron increase in moisture gradients20,
as indeed it does, at least for the large-scale part21 (Extended Data Fig. 4).
Further study is needed to understand why this is so, and to examine in
greater detail how clouds respond to changing moisture transports;
changes in low cloud amount may for example help the atmosphere
restore imbalances in boundary layer moist enthalpy such as those caused
by lower-tropospheric mixing19. Because LTMI ignores any information
on clouds, it is likely that additional measures of cloud characteristics22

could explain some of the variations in low-cloud feedback not yet
explained here.

We end by considering observational estimates of S and D (see
Fig. 5). These show an S near the middle of the GCM range, but a
D close to the top end, as hinted already by Fig. 3. D may not be well
constrained because v must be inferred from observational reana-
lyses, although available horizontal wind observations support the
existence of strong mid-level outflows13, and the result is consistent
across both reanalyses examined. The reanalysis estimates of S are less
consistent but this quantity can be fairly well constrained by radio-
sonde observations.

Taking the available observations at face value implies a most likely
climate sensitivity of about 4 uC, with a lower limit of about 3 uC.
Indeed, all 15 of the GCMs with ECS below 3.0 uC have an LTMI
below the bottom of the observational range. Further work may be
needed to better constrain these indices, and to test whether their
relationship to ECS is robust to design factors common to all models.
For example, this should be tested in global cloud-resolving models.

–0.8 –0.6 –0.4 –0.2 0.0 0.2

Large-scale source (g kg–1 day–1)

1,000

800

600

400

200

P
re

s
s
u
re

 (
h
P

a
)

High D 

Low D 

High D, +4 K

Low D, +4 K

Figure 4 | Estimated water vapour source MLT, large due to large-scale lower-
tropospheric mixing and its response to warming. See Methods for
calculation details. Data are from ten atmosphere models, averaged from 30u S
to 30uN over oceans, with the average of the four models having the largest D
shown in magenta and the average of the four models with the smallest D
shown in blue. Dashes show results in 14 K climate. Changes at 14 K are
nearly identical whether or not land areas are included.
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Figure 5 | Relation of lower-tropospheric mixing indices to ECS. ECS versus
S (a), D (b) and LTMI 5 S 1 D (c) from the 43 coupled models with known
ECS. Linear correlation coefficients r are given in each panel (r 5 0.70 in c is the
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RESEARCH ARTICLE

4 0 | N A T U R E | V O L 5 0 5 | 2 J A N U A R Y 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

Sherwood et al. (2014) Spread in model climate sensitivity
traced to atmospheric convective mixing, Nature.
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Principle

• Find a variable X related to the ESC S, e.g.

S = aX + b + ε

• Estimate (a, b) from an ensemble of models
(CMIP),

• Take an observed value for X (+ uncrty): Xo ±εo,

• Derive a revised estimate for real worl sensitivity:

Ŝ = âXo + b̂ ± (ε+ âεo).

People often neglect uncertainty in (â, b̂).

simulations, thereby supporting our hypothesis about the suite of common physical processes that govern
the LT response to sudden but also partly to continuous perturbations of the stratospheric AOD. The
radiative and temperature responses to volcanic eruptions could thus be used to constrain the long-term
cooling effectiveness of SRM-SAI.

With the observational constraint established, we use the multimodel emergent relationship to estimate the
mean ΨSRM at 0.44 K·W�1·m2 with a 95% confidence interval of [0.19,0.68] K·W�1·m2 (Figure 3b).
Comparatively, the unconstrained ensemble PDF estimate gives an average sensitivity of 0.54 K·W�1·m2

([0.21,0.87] K·W�1·m2). Therefore, the application of this observational constraint tends to reduce both the
best guess (by approximately 20%) and the likely range of the normalized cooling effect of SRM-SAI.

7. Discussion

Emergent constraints can be flawed by the model interdependence and/or the sensitivity of the metrics to a
given subset of models or experiments (Knutti et al., 2017). In order to discuss the robustness of our results,
several sensitivity tests have been conducted. In line with Knutti et al. (2017), we have assessed the impact of
CanESM2 on the multimodel regression (see Figure S8 in the supporting information). While the slope of the
relationship between ΨSRM and ΨVolc is larger, the emergent relationship across the remaining models still
exists and confirms a constrained estimate of ΨSRM that is lower than the prior estimate (see Table S2 in
the supporting information). In order to further assess the robustness of our metrics, we have used the results
from CCSM4, which was not used to establish our constrained estimate of ΨSRM. The addition of CCSM4 into
the multimodel ensemble provides an independent assessment of our constrained estimate ofΨSRM because
this model has been forced by a different baseline emission scenario (RCP6.0 instead of RCP4.5) and a differ-
ent rate of SO2 injection (8 Tg of SO2 per year instead of 5 Tg). Our results show that our constrained estimate
of ΨSRM is not sensitive to the inclusion of this model (see Figure S9 in the supporting information), implying
the robustness of our metrics to a range of future scenarios and level of SO2 injection.

Future emergent constraints on LT sensitivity to SRM-SAI will require a larger ensemble of Earth system
models, as well as additional model outputs and observational data. So far, SRM-SAI simulations allow

Figure 3. (a) Scatterplot of the long-term normalized sensitivity to solar radiation management by stratospheric aerosol injection (SRM-SAI, ΨSRM) versus the short-
term normalized sensitivity to volcanic eruptions (ΨVolc) for the selected Geoengineering Model Intercomparison Project (GeoMIP) models. Estimates for eachmodel
are averaged across all members for SRM-SAI, and across all members and all eruptions for volcanic eruptions. Confidence intervals for each model (across all
eruptions and members when available) are given at the 95% confidence level and represented with thin colored lines. The thicker horizontal lines around each
model represent the contribution of internal climate variability, calculated by removing from the total uncertainties the part due to the spread between the five
volcanic eruptions averaged across members when available. The red line shows the best linear fit (r = 0.83) across the GeoMIP models and the blue line represents
the mean observational estimate of ΨVolc obtained across all volcanic eruptions. Respective uncertainties are symbolized with colored shades, representing ±1
standard deviation. The red dashed lines represent the Cook’s distance around the multimodel regression. (b) Probability density functions (PDFs) for the sensitivity
ofΨSRM. The blue PDF is derived after applying the volcanic observational constraint to the multimodel emergent relationship. The red line shows the unconstrained
PDF, assuming that all GeoMIP models are equally likely and follow a Gaussian distribution. Shadings represent the 95% confidence intervals.

10.1029/2018GL077583Geophysical Research Letters

PLAZZOTTA ET AL. 5669

From Plazzotta et al., 2018, GRL

Requirements:

• Relationship between (X ,S) [+ phys. underst.]

• Observational estimate of X (not too uncertain).
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Catalog
Large diversity of observational constraints – see e.g., IPCC AR6, Ch7, 7.5.4 (and earlier studies).

• Mean climate characteristics e.g. seasonal cycle in surface temperature (Knutti
et al., 2006, JClim),

• Feedback processes, e.g., tropical low-clouds, albedo, etc (Sherwood et al.,
2014, Brient et al., 2016, Zhai et al., 2015),

• Interannual variability (Cox et al., 2018),

• Observed temperature change, historical or paleo (see later).
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Catalog (2) – Knutti et al. (2017)
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The use of the recent warming as a constraint is attractive, as 
greenhouse gases have ‘likely’ caused 0.5 °C to 1.3 °C of warming 
(>66% probability) over the period 1951−2010, whereas there is 

also ‘very likely’ a human contribution to upper-ocean warming7. 
However, estimating ECS and TCR from the instrumental record 
requires a conceptual or physical model10. In the simplest form, the 
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Figure 1 | Overview of published best estimates and ranges for the transient climate response constrained by different lines of evidence. Different colours 
represent different studies. Dots mark means, medians or best estimates; lines mark different percentile ranges. The grey shaded range marks the 1 °C to 2.5 °C 
range within which the TCR is ‘likely’ to lie (probability >66%) as assessed by the IPCC, the grey vertical line indicates a value of 3 °C above which TCR is 
‘extremely unlikely’ (<5%). Details and assumptions are given in the text, the Methods section and Supplementary Table 1.
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Figure 2 | Overview of published best estimates and ranges for equilibrium climate sensitivity constrained by different lines of evidence. As 
with Fig. 1, but the grey shaded range marks the 1.5 °C  to 4.5 °C range within which the IPCC have assessed that ECS is ‘likely’ to lie (probability 
>66%), the grey vertical lines indicate a value of 1 °C below which ECS is ‘extremely unlikely’ (<5%), and a value of 6 °C above which ECS is ‘very 
unlikely’ (<10%). Details and assumptions are given in the text, Methods section and the Supplementary Table. Supplementary Figure 1 provides a 
combination of Figs 2 and 3.
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Equilibrium climate sensitivity (°C)

Covey et al. (1996); plausible range 
Lea (2004); mean and standard error 
Annan et al. (2005); mean and standard deviation 
Schneider von Deimling et al. (2006); 90% 
Royer et al. (2007); mean and 90% see paper for definitions 
Chylek and Lohmann (2008); mean and 95% 
Dunkelye Jones et al. (2010); best estimate 
Köhler et al. (2010); most likely and 90% 
Holden et al. (2010); mode and 90%
Rohling et al. (2012); mean and uncertainty, see paper for aerosol forcing uncertainty 
Hargreaves et al. (2012); median and 90% 
Schmittner et al. (2011); median and 90% 
Caballero and Huber (2013); range of simulations 
Kutzbach et al. (2013); model range warm Pleistocene 
Kutzbach et al. (2013); model range cold Pleistocene 
Heydt et al. (2014); best estimate, see paper for uncertainty 
Harrison et al. (2015); best estimate 
Köhler et al. (2015); mean and 68% for cold Pleistocene 
Köhler et al. (2015); mean and 68% for warm Pleistocene 
Martínez-Botí et al. (2015); 68% 
Sha�er et al. (2016); preferred value PETM, see paper for uncertainty 
Sha�er et al. (2016); preferred value pre-PETM, see paper for uncertainty
Hargreaves and Annan (2016); best estimate 
Anagnostou et al. (2016); mode and 66% for one proxy
Friedrich et al. (2016); mean and likely range for cold Pleistocene 
Friedrich et al. (2016); mean and likely range for warm Pleistocene 

Murphy et al. (2004); median and 90% 
Knutti et al. (2006); median and 90% 
Huber and Knutti (2011); mean and 90% 
Loutre et al. (2011); range of parameter settings 
Sexton et al. (2012); mean and 90% 
Fasullo and Trenberth (2012); constraint model range
Tett et al. (2013); best estimate and 95% 
Masson and Knutti (2013); best estimate and 95% 
Su et al. (2014); lower bound 
Sherwood et al. (2014); best estimate and plausible range
Tian (2015); best estimate
Sanderson (2015); mean and 90% 
Zhai et al. (2015); mean and standard deviation 
Brient and Schneider (2016); most likely and 90% 
Tan et al. (2016); best estimate 
Siler et al. (2017); most likely and 90% 

Manabe and Wetherald (1967); best estimate and range for di�erent assumptions 
Manabe and Wetherald (1975); best estimate 
Ramanathan et al. (1979); range of di�erent models, Northern Hemisphere only 
Piani et al. (2005); median and 90% 
Räisänen (2005); median and 90% 
Stainforth et al. (2005); median and 90% 
Forster and Taylor (2006); mean and standard deviation 
Soden and Held (2006); mean and range of all models 
CMIP3 median and range of all models 
CMIP5 median and range of all models 
Sanderson et al. (2011); mean and 90% for one ensemble 
Andrews et al. (2012); mean and range of all models 
Olivié et al. (2012); mean and range of all models 
Geo�roy et al. (2013b); mean and range of all models 
Geo�roy et al. (2013a); mean and range of all models 
Dessler (2013); best estimate and standard deviation of model ensemble 
Sanderson (2013); most likely and 90%
Forster et al. (2013); mean and 90% 
Chung and Soden (2015); range of all models 
Andrews et al. (2015); mean and range of all models 
Zelinka et al. (2016); null hypothesis 
Caldwell et al. (2016); mean and range of all models
Ragone et al. (2016); best estimate without ocean heat transport 
Lucarini et al. (2017); best estimate with ocean heat transport by di�usion 
Proistosescu and Huybers (2017); median and 90%
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Figure 3 | Overview of published best estimates and ranges for equilibrium climate sensitivity constrained by different lines of evidence. Continued 
from Fig. 2. Supplementary Figure 1 provides a version where Figs 2 and 3 are combined.
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From Knutti et al., 2017, NGeo.
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But...

Some constraints found in CMIP5 do not hold in CMIP6.

Schlund et al., 2020, ESD
“CMIP6 data shows a decrease in skill and statistical significance of the
emergent relationship for nearly all constraints, with this decrease being
large in many cases.” Also Caldwell et al., 2018.
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Why this happened?

Stats point of view:
• High dimension problem.

• Small training set.

• Risk of cherry picking – which maybe actually oc-
curred.

• Solutions could include a more comprhensive explo-
ration of uncertainties.

Phys. point of view:
• Need of “independently verifiable physical mecha-

nism”,

• Many constraints apply to one single process / feed-
back.

The dark side of CMIP:
• Too small

• non-independent (cousin)

• no effort to sample uncertainty

See ’Ensemble of opportunity’ literature.

in the annual mean climatology and that we use the mean
square of the temperature and precipitation distance to define
overall similarity rather than presenting the single variables
as in MK11. None of those choices affect the main conclu-
sions. The similarity metric is defined from the unperturbed
preindustrial model control state and is strongly determined
by biases in the present day climatology and seasonal cycle,
that is, by model differences rather than initial conditions or
forcing. The pairwise distance between models is used to
construct “family trees” by a hierarchical clustering as in
MK11. The interpretation of the trees is that models
appearing in the same branch are close to each other in terms
of the defined metric. Two branches or nodes are more
similar the farther to the left the branching point is located.
Note that all results presented here are only based on model
output; they assume no knowledge about the structure,
parameterizations, or code of any model. A similar tree is
constructed for the projected change in the RCP8.5 scenario.

[6] The clustering of the CMIP3 and the new CMIP5
models for the control climate is shown in Figure 1a
and confirms several connections. For example, the new
MPI-ESM remains close to its predecessor because the
atmosphere models ECHAM6 and ECHAM5 are quite
similar. Two of the CSIRO models are close, and CCSM4
is close to CCSM3. Surprisingly, the CESM1 model
versions are still close to CCSM4, although most of the
major parameterizations were changed going from CCSM4
to CESM1 (see below). IPSL-CM5A is an only slightly
modified IPSL-CM4 and appears close in the tree, IPSL-
5A-LR/MR differ in resolution, whereas IPSL-CM5B
involved substantial changes in the atmospheric model.
The GISS-E2-H/R models differ in their ocean components
and remain close but appear separated from the older
GISS-E-H/R models in CMIP3 despite similar physics.
The main reason is much higher resolution in both ocean
and atmosphere. The GFDL-ESM2M/G models differ in

a) Control state b) Projected change RCP8.5

Figure 1. (a) The model “family tree” from CMIP3 and CMIP5 (marked with asterisks) control climate plus observations
(ERA40/GPCP and NCEP/CMAP), shown as a dendrogram (a hierarchical clustering of the pairwise distance matrix for
temperature and precipitation fields, see text). Some of the models with obvious similarities in code or produced by the same
institution are marked with the same color. Models appearing in the same branch are close, and similarity is larger the more
to the left the braches separate (for a detailed description of the method, see Masson and Knutti [2011]). (b) Same but based
on the predicted change in temperature and precipitation fields for the end of the 21st century in the RCP8.5 scenario relative
to the control.

KNUTTI ET AL.: CLIMATE MODEL GENEALOGY
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In IPCC AR6

• Cloud feedbacks: not taken into account
Constraints usually applies to one process / feedback / type of clouds; other feedbacks can be biased too...

• Climatology: not taken into account
“the physical relevance [...] is unclear”
“these constraints are not considered reliable”

• Historical warming [next]: taken into account :-)
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Outline

1. Review of constraints

2. Historical warming and TCR

3. Statistical syntheses
a. Sherwood et al. (2020)
b. IPCC AR6

4. Conclusion
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About historical warming
Approved Version Summary for Policymakers IPCC AR6 WGI 

SPM-7 Total pages: 41 

Human influence has warmed the climate at a rate that is unprecedented
in at least the last 2000 years

Changes in global surface temperature relative to 1850-1900

1850 1900 1950 2000 2020

ºC

-0.5

0.0

0.5

1.0

1.5

2.0

observed
simulated
human &
natural

simulated
natural only
(solar &
volcanic)

b) Change in global surface temperature (annual average) as observed and 
simulated using human & natural and only natural factors (both 1850-2020)

a) Change in global surface temperature (decadal average)
as reconstructed (1-2000) and observed (1850-2020)

Warmest multi-century 
period in more than 
100,000 years

Warming is unprecedented 
in more than 2000 years

reconstructed

-0.5

-1
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0.5
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1.5
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202018501000 15005001

observed
1.0

0.2

Panel a): Changes in global surface temperature reconstructed from paleoclimate archives (solid grey line, 
1–2000) and from direct observations (solid black line, 1850–2020), both relative to 1850–1900 and decadally 
averaged. The vertical bar on the left shows the estimated temperature (very likely range) during the warmest 
multi-century period in at least the last 100,000 years, which occurred around 6500 years ago during the current 
interglacial period (Holocene). The Last Interglacial, around 125,000 years ago, is the next most recent candidate 
for a period of higher temperature. These past warm periods were caused by slow (multi-millennial) orbital 
variations. The grey shading with white diagonal lines shows the very likely ranges for the temperature 
reconstructions. 
Panel b): Changes in global surface temperature over the past 170 years (black line) relative to 1850–1900 
and annually averaged, compared to CMIP6 climate model simulations (see Box SPM.1) of the temperature 
response to both human and natural drivers (brown), and to only natural drivers (solar and volcanic activity, green). 
Solid coloured lines show the multi-model average, and coloured shades show the very likely range of simulations. 
(see Figure SPM.2 for the assessed contributions to warming). 
{2.3.1, 3.3, Cross-Chapter Box 2.3, Cross-Section Box TS.1, Figure 1a, TS.2.2}

Figure SPM.1:    History of global temperature change and causes of recent warming.

Issues: various forcings (GHGs vs AER, various GHGs); out of equilibrium state.
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About historical warming
Approved Version Summary for Policymakers IPCC AR6 WGI 

SPM-7 Total pages: 41 

Human influence has warmed the climate at a rate that is unprecedented
in at least the last 2000 years

Changes in global surface temperature relative to 1850-1900
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b) Change in global surface temperature (annual average) as observed and 
simulated using human & natural and only natural factors (both 1850-2020)

a) Change in global surface temperature (decadal average)
as reconstructed (1-2000) and observed (1850-2020)

Warmest multi-century 
period in more than 
100,000 years

Warming is unprecedented 
in more than 2000 years
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Panel a): Changes in global surface temperature reconstructed from paleoclimate archives (solid grey line, 
1–2000) and from direct observations (solid black line, 1850–2020), both relative to 1850–1900 and decadally 
averaged. The vertical bar on the left shows the estimated temperature (very likely range) during the warmest 
multi-century period in at least the last 100,000 years, which occurred around 6500 years ago during the current 
interglacial period (Holocene). The Last Interglacial, around 125,000 years ago, is the next most recent candidate 
for a period of higher temperature. These past warm periods were caused by slow (multi-millennial) orbital 
variations. The grey shading with white diagonal lines shows the very likely ranges for the temperature 
reconstructions. 
Panel b): Changes in global surface temperature over the past 170 years (black line) relative to 1850–1900 
and annually averaged, compared to CMIP6 climate model simulations (see Box SPM.1) of the temperature 
response to both human and natural drivers (brown), and to only natural drivers (solar and volcanic activity, green). 
Solid coloured lines show the multi-model average, and coloured shades show the very likely range of simulations. 
(see Figure SPM.2 for the assessed contributions to warming). 
{2.3.1, 3.3, Cross-Chapter Box 2.3, Cross-Section Box TS.1, Figure 1a, TS.2.2}

Figure SPM.1:    History of global temperature change and causes of recent warming.

Issues: various forcings (GHGs vs AER, various GHGs); out of equilibrium state.
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About historical warmingApproved Version Summary for Policymakers IPCC AR6 WGI 

SPM-8 Total pages: 41 

Observed warming is driven by emissions from human activities, with 
greenhouse gas warming partly masked by aerosol cooling
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b) Aggregated contributions to 
2010-2019 warming relative to 
1850-1900, assessed from 
attribution studies 

a) Observed warming
2010-2019 relative to 
1850-1900 

Contributions to warming based on two complementary approachesObserved warming
c) Contributions to 2010-2019 
warming relative to 1850-1900, 
assessed from radiative
forcing studies

Panel a): Observed global warming (increase in global surface temperature) and its very likely range {3.3.1, 
Cross-Chapter Box 2.3}.
Panel b): Evidence from attribution studies, which synthesize information from climate models and 
observations. The panel shows temperature change attributed to total human influence, changes in well-mixed 
greenhouse gas concentrations, other human drivers due to aerosols, ozone and land-use change (land-use 
reflectance), solar and volcanic drivers, and internal climate variability. Whiskers show likely ranges {3.3.1}. 
Panel c): Evidence from the assessment of radiative forcing and climate sensitivity. The panel shows 
temperature changes from individual components of human influence, including emissions of greenhouse gases, 
aerosols and their precursors; land-use changes (land-use reflectance and irrigation); and aviation contrails. 
Whiskers show very likely ranges. Estimates account for both direct emissions into the atmosphere and their effect, 
if any, on other climate drivers. For aerosols, both direct (through radiation) and indirect (through interactions with 
clouds) effects are considered.{6.4.2, 7.3}

Figure SPM.2:    Assessed contributions to observed warming in 2010–2019 relative to 1850–1900.  
Issues: various forcings (GHGs vs AER, various GHGs); out of equilibrium state.
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About historical warming

441

Human Influence on the Climate System Chapter 3

3

of a different approach. This agreement enhances confidence in the 
magnitude and causes of attributable surface temperature warming.

The AR5 found high confidence for a major role for anthropogenic 
forcing in driving warming over each of the inhabited continents, 
except for Africa where they found only medium confidence 
because of limited data availability (Bindoff et al., 2013). At the 
hemispheric scale, Friedman et al. (2020) and Bonfils et al. (2020) 

detected an anthropogenically forced response of inter-hemispheric 
contrast in surface temperature change, which has a complex time 
evolution but shows the Northern Hemisphere cooling relative 
to the Southern Hemisphere until around 1975 but then warming 
after that. Bonfils et al. (2020) attribute the Northern Hemisphere 
reversal to a combination of reduced aerosol forcing and greenhouse 
gas induced warming of Northern Hemisphere land masses. 
Friedman et al. (2020) found that CMIP5 models simulate the 

Figure 3.9 | Global, land, ocean and continental annual mean near-surface air temperatures anomalies in CMIP6 models and observations. Time series are 
shown for CMIP6 historical anthropogenic and natural (brown), natural-only (green), greenhouse gas only (grey) and aerosol only (blue) simulations (thick lines show multi-
model means and shaded regions show the 5th to 95th percentile ranges) and for HadCRUT5 (black). All models have been subsampled using the HadCRUT5 observational data 
mask. Temperature anomalies are shown relative to 1950–2010 for Antarctica and relative to 1850–1900 for other continents. CMIP6 historical simulations are extended using 
the SSP2-4.5 scenario simulations. All available ensemble members were used (see Section 3.2). Regions are defined by Iturbide et al. (2020). Further details on data sources 
and processing are available in the chapter data table (Table 3.SM.1).

forcings present, we therefore regress the observations onto
the ALL, GHG and NAT responses, and transform the
resulting regression coefficients [Allen and Tett, 1999] to
obtain scaling factors on the model’s greenhouse gas
(GHG), other anthropogenic (dominated by aerosols; OTH),
and natural (NAT) responses. Decadal mean temperature
anomalies were projected onto T4 spherical harmonics, and
an EOF truncation of 30 was applied. We apply the detection
and attribution analysis over the 1851–2010 period, which is
longer than the typical period over which such analyses are
applied [e.g., Hegerl et al., 2007]. Since we have only 1280
years of control simulation available, we use anomalies rel-
ative to each ensemble mean [Stone et al., 2007] to estimate
the EOFs used in the truncation.
[9] Applying such an analysis over the 1851–2010 period,

we find that the GHG, OTH and NAT responses are all
detectable, since their regression coefficients are inconsistent
with zero (first set of bars in Figure 3a). However, the
responses to all three sets of forcings appear to be signifi-
cantly overestimated by the model, since all three regression
coefficients are significantly smaller than one. Such a picture
would be consistent with the model having too high a
Transient Climate Response (TCR): At 2.3°C its TCR would
rank second highest amongst the CMIP3 models assessed by
Randall et al. [2007]. The aerosol response has a particularly
small best estimate regression coefficient of �0.3. Since the
model’s aerosol forcing itself is realistic (�0.8 W m�2 in
2005), this suggests that its response to aerosol forcing is too
strong. Our focus here is mainly on the GHG regression
coefficient, since this is the dominant factor scaling pro-
jected future warming. Over the period 1901–2000, similar
to that used to derive the regression coefficients reported by
Stott et al. [2006] and Hegerl et al. [2007], the best estimate
of the greenhouse gas regression coefficient is considerably
larger than that derived over the 1851–2010 period and
consistent with one (third set of bars in Figure 3a). Figure 1a
shows that the global mean temperature in the first two

decades of the 20th century was anomalously cool, while the
decade 2001–2010, though warmer than the 1990s, exhib-
ited less warming relative to the 1990s than the ALL simu-
lations of CanESM2. Figure 3a shows that similar GHG
regression coefficients to those derived over the period
1851–2010 are obtained either over the period 1851–2000 or
1901–2010. A similar but somewhat smaller sensitivity of
the GHG regression coefficient to the period was seen in an
analysis using the global mean only, with no signal-to-noise
optimisation, and with anomalies expressed relative to a
fixed 1901–2000 climatology. The uncertainty range on the
GHG regression coefficient is found to be smaller in our
analysis than that derived, for example, for HadCM3 by Stott
et al. [2006] and Huntingford et al. [2006] using a similar
analysis. This appears to relate to our use of a five-member
ensemble rather than a four-member ensemble for all sets of
simulations, our use of an EOF-basis derived from CanESM2
which results in a higher signal-to-noise ratio, and somewhat
lower simulated internal variability in decadal mean tem-
perature in CanESM2 compared to HadCM3. The OTH
regression coefficient shows some sensitivity to the period,
but differences are consistent with internal variability. The
NAT regression coefficient is significantly larger for periods
excluding the Krakatoa eruption, which would be consistent
with the model having too strong volcanic forcing following
Krakatoa [Joshi and Jones, 2009].
[10] The OTH and NAT regression coefficients are found

to be somewhat sensitive to the EOF truncation used in the
analysis, as shown in the fifth set of bars in Figure 3a, but
the GHG regression coefficient is relatively insensitive to
changes in truncation. Regression coefficients are relatively
insensitive to the use of ALL, AER and NAT simulations
in the regression (bars labelled AER), or to the use of
intra-ensemble anomalies for estimating uncertainties (bars
labelled ANOM). The last two sets of bars demonstrate
that using global mean information only, while somewhat
inflating uncertainties [Stott et al., 2006] hardly changes

Figure 2. Near-surface air temperature trends in °C over the 160-year period 1851–2010 in (a) HadCRUT3 observations,
(b) simulations with anthropogenic and natural forcing (ALL), (c) simulations with greenhouse gas changes only (GHG),
and (d) simulations with aerosol changes only (AER). Trends are shown in grid cells in which at least 100 annual means
are present, and grid cells are shown in grey otherwise. Equivalent trends calculated from the NAT simulations are small
everywhere.

GILLETT ET AL.: OBSERVATIONALLY-CONSTRAINED PROJECTIONS L01704L01704
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Issues: various forcings (GHGs vs AER, various GHGs); out of equilibrium state.
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Attribution approaches
Try to estimate contributions from subsets of forcings, e.g., ANT/NAT, or better GHG/AER/NAT.

Key approach based on (variants of) linear regression:

Y` =
k∑

i=1

βi X
(i)
` + ε`, Cov(ε) = Σ,

• `: location (space-time),

• Y : observations (space-time vector),

• βi : scaling factor (scalar), unknown,

• X (i): expected response to forcing i (space-time vec-
tor), known,

• ε: internal variability (space-time vector),

• Σ: IV covariance matrix (matrix).

• k = 2 or 3.

• Philosophy:
The response patterns X are perfectly known.
Amplitude of the responses are not

• β̂GHG can be use to correct (rescale) model results.
ASK approach ; illustration

• But:

• separating GHG and AER is hard (Ribes et al.,
2013, IPCC AR5, etc).

• linear regression model is questionable.
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Simple constraint

AR6 novelty: Post-1980 trends almost un-
affected by AER.

Tokarska et al., Sci. Adv. 2020; 6 : eaaz9549     18 March 2020
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C L I M A T O L O G Y

Past warming trend constrains future warming  
in CMIP6 models
Katarzyna B. Tokarska1*†, Martin B. Stolpe1*, Sebastian Sippel1, Erich M. Fischer1,  
Christopher J. Smith2, Flavio Lehner1, Reto Knutti1

Future global warming estimates have been similar across past assessments, but several climate models of the 
latest Sixth Coupled Model Intercomparison Project (CMIP6) simulate much stronger warming, apparently in-
consistent with past assessments. Here, we show that projected future warming is correlated with the simulated 
warming trend during recent decades across CMIP5 and CMIP6 models, enabling us to constrain future warming 
based on consistency with the observed warming. These findings carry important policy-relevant implications: 
The observationally constrained CMIP6 median warming in high emissions and ambitious mitigation scenarios is 
over 16 and 14% lower by 2050 compared to the raw CMIP6 median, respectively, and over 14 and 8% lower by 
2090, relative to 1995–2014. Observationally constrained CMIP6 warming is consistent with previous assessments 
based on CMIP5 models, and in an ambitious mitigation scenario, the likely range is consistent with reaching the 
Paris Agreement target.

INTRODUCTION
Both international climate assessments [e.g., Intergovernmental Panel 
on Climate Change (IPCC) Assessment Reports (1)] and national 
climate scenarios rely heavily on results from multiple climate model 
simulations collected in model intercomparisons. Hence, the reliability 
of and confidence in these model intercomparisons have a wide- 
ranging influence on science and ultimately policy-targeted science 
communication. Model intercomparisons have always featured 
diverging model projections, for example, for the question of how 
much warming to expect for a doubling of global atmospheric CO2 
concentration. However, the spread across such ad hoc model 
ensembles of opportunity is challenging to interpret (2). This is be-
cause not all models are equally plausible (3), and the multimodel 
spread may be partly inconsistent with evidence from observations, 
theory, or process understanding. The range of models may be too 
wide when unrealistic models are included or too narrow when 
models underestimate uncertainties from processes that are not or 
poorly represented. The multimodel mean may be biased high or low 
when many models are biased in the same way or when near-duplicate 
models are included (4). It is therefore essential to relate and, when 
necessary, recalibrate (e.g., by reweighting models) the raw spread 
of such model ensembles, based on other constraints from process 
evidence, past trends, climatology, or probabilistic estimates from 
perturbed physics ensembles, to produce projections (including 
robust uncertainty estimates) of future climate that are consistent 
with our understanding and with observations of the current climate.

The long-term warming range of the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) (5) models was interpreted in 
the IPCC Fifth Assessment Report (AR5) (1) to be unbiased in its 
raw mean, but the 5 to 95% ranges in global temperature projections 
were interpreted as “likely” (>66% probability) to account for struc-
tural model uncertainties. Phase 6 of the Coupled Model Intercom-
parison Project (CMIP6) will inform much of the physical science 

basis for the upcoming Sixth Assessment Report (AR6) of the IPCC 
(6). It includes the latest generation of comprehensive Earth system 
models (ESMs), driven by historical greenhouse gas concentrations, 
and followed by different future greenhouse gas and aerosol con-
centrations according to the Shared Socioeconomic Pathways (SSP) 
scenarios (7). The first models submitted to the archive suggest that 
CMIP6 will span a wider range of warming responses than CMIP5. 
Several ESMs submitted to CMIP6 have equilibrium climate sensi-
tivity (ECS) values (table S1) higher than any of the CMIP5 models 
(8), and a third of CMIP6 models submitted to date (10 of 29 models; 
table S1) exceed the range of 1.5° to 4.5°C for ECS assessed as likely 
(17 to 83% range) in the IPCC AR5 report. Note that for simplicity 
we use the term “equilibrium climate sensitivity,” although the values 
are derived from nonequilibrium conditions and rather represent 
the “effective climate sensitivities” [i.e., a measure of the feedbacks 
during the transient regime that is extrapolated to equilibrium (9)]. 
As a result of higher climate sensitivity values, future climate pro-
jections from these models show stronger future global mean warming 
than the warming previously reported in AR5, although a direct com-
parison is challenging due to a novel generation of emission scenarios 
used to drive the models (10). Some models, for instance, project 
warming of 2.5° to 3°C for scenarios that were designed to be consistent 
with the Paris temperature target of well below 2°C (7). Therefore, the 
critical question arises whether projections of such models with high 
future warming are realistic. If they are, that would result in much 
higher risks and costs of future climate change than previously as-
sessed and imply even faster mitigation to achieve climate targets. If 
the models, on the other hand, are biased high, that would imply that 
climate assessments need to recalibrate the raw ensemble.

A more near-term (transient) global warming that arises after 
70 years of a 1% per year increase in atmospheric CO2 concentration 
is referred to as the transient climate response (TCR). TCR and ECS 
metrics are often used to develop and calibrate simple climate model 
emulators, which are used with integrated assessment models and 
provide policy-relevant information regarding emission pathways 
and related climate responses (11). Estimates of TCR also affect the 
allowed carbon emissions for the Paris Agreement climate target 
(12) and are important for climate projections and risk assessment 
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Fig. 2. Correlation of the simulated warming trend for the period 1981–2014 with TCR. (A) Correlation based on CMIP6 models, (B) based on CMIP5 models, and 
(C) based on the joint distribution of CMIP6 models (circles) and CMIP5 models (triangles). The emergent constraint is based on the mean of two observational datasets 
[Cowtan and Way (27) and GISTEMP (28, 29)], adjusted for the blending effects (gray vertical line). If a model had more than one ensemble member, its ensemble mean 
is shown and was used in the regression. On (A) to (C), the dark gray rectangle shows the ±1 uncertainty range in the observed trends for the period 1981–2014 (with 
the uncertainty range encompassing effects of internal variability, blending, and structural uncertainties), and the light gray rectangle shows the ±2 range (see Materials and 
Methods). The blue rectangle indicates the likely range (>66%) of the emergent constraint on future warming (TCR). The median value is shown by dashed blue line, 
and dotted blue lines indicate the 5 to 95% uncertainty range (see Materials and Methods on how the uncertainty range on constrained TCR was derived). (D) Constrained 
and unconstrained ranges of TCR based on CMIP6 and CMIP5 models [following from (A) to (C)], compared with the IPCC AR5 likely range. Unconstrained ranges (gray 
box plots) are based on raw CMIP models, shown to the left of each box plot by individual dots. Constrained ranges (blue box plots) are based on the emergent constraint 
(as in top panels). The last box plot in (D) shows the IPCC AR5 likely (>66% probability; equivalent to 17 to 83% range) range. Each box plot shows 5 to 95% range, likely 
range, and median value, as illustrated in the legend.
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Model weighting

Weight models according to independence and
performance

Liang et al., 2020, GRL
Brunner et al., 2020, ESD
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Figure 8. (a) Unweighted (gray) and weighted (colors) temperature change (relative to 1995-2014) for both periods and scenarios. (b)

Unweighted (gray) and weighted (green) Transient Climate Response (TCR). The dots show individual models as labelled, with the dot size

indicating the weight. The horizontal dot position is arbitrary.

in total. This becomes even clearer when investigating the two 20-year periods, reflecting mid- and end-of-century conditions

(figure 8a and table S2).

Based on these results, warming exceeding 5 °C by the end of the century is very unlikely even under the strongest climate

change scenario SSP5-8.5. The mean warming for this case is shifted downward to about 3.7 °C and the 66 % (likely) and 90 %

ranges are reduced by 12 % and 30 %, respectively. For SSP1-2.6 in the end-of-century period as well as both SSPs in the mid-370

century period, reductions in the mean warming of about 0.1 °C are found. The likely range is reduced by about 30 % in these

three cases. A summary of all statistics can be found in table S2 in the supplement. Recent studies that use historical temperature

trend as an observational constraint for future warming lead to similar conclusions, with lower constrained warming compared

to unconstrained (both in the mean and upper percentiles of the distributions) (e.g., Tokarska et al., 2020; Nijsse et al., 2020).

To investigate the influence of remaining internal variability in our combination of diagnostics on the weighting we also375

perform a bootstrap test. Selecting only one random member per model (for models with more than one ensemble member)

we calculate weights and the corresponding unweighted and weighted temperature change distributions. This is repeated 100

times, providing uncertainty estimates for both the unweighted and weighted percentiles. The mean values of the weighted

percentiles taken over all 100 bootstrap samples are very similar to the values from the weighting based on the full MME

(including all ensemble members; see figure S3) confirming the robustness of our approach.380

We also apply weights to TCR estimates in figure 8b. For four models included in the weighting of temperature change we

do not yet have all information available to estimate TCR (FGOALS-g3, CanESM5-CanOE, FIO-ESM-2-0, MCM-UA-1-0);

16
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Bayesian analysis (1)

Try to estimate the forced response “given observa-
tions”.

Ribes et al., 2021, Sci Adv.
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Bayesian analysis (2)

x =


xall

1850
...

xall
2100

 , y =

 y1850
...

y2019

 .

Prior: x ∼ N(µ,Σmod),

Obs: y = Hx + ε, with ε ∼ N(0,Σobs),

We compute: p(x |y)

x : forced response (1850–2100), y : observations, 1850–2019,
Σmod: model error covariance, Σobs: obs. error covariance,
H: observation operator, ε: error in obs. (i.v. + meas.),

There are 4 inputs: y ,µ,Σmod,Σobs. #Kriging, #KalmanFiltering

Can be extended to TCR / ECS

 X all

F
log(−λ)

 ∼ N(µ,Σmod).

• TCR: 1.33°C – 2.36°C

• ECS: 2.2°C – 4.6°C
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IPCC AR6 Synthesis (projections)

• IPCC AR6 WG1 published in August 2021,

• GSATa projections are model results constrained by
observations

• Various methods used, incl. previous constraints,
EBMs, and others.

• Results on TCR / ECS rely on a statistical relationship
with xALL accross (CMIP) climate models.

• This relationship could be questioned – see pattern ef-
fect issue.

a
Global mean Surface Air Temperature

581

Future Global Climate: Scenario-based Projections and Near-term Information Chapter 4

4

GSAT was warmer in 1995–2014 (recent past) than 1850–1900 by 
0.85 [0.67 to 0.98] °C. GSAT diagnosed for 1986–2005 (AR5 recent 
past) relative to 1850–1900 is 0.08°C higher than was diagnosed 
in AR5, due to methodological and dataset updates (Cross-Chapter 
Box 2.3, Table 1).

The uncertainty in GSAT relative to 1850–1900 includes the very 
likely ranges of assessed GSAT change relative to 1995–2014 
(depending on scenario and period, between 0.5°C and 2.4°C; 
Figure  4.11d and Table  4.5), the uncertainty in historical GSAT 
change from the mean over 1850–1900 to 1995–2014 (about 0.3°C; 
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Figure 4.11 | Multiple lines of evidence for global surface air temperature (GSAT) changes for the long-term period, 2081–2100, relative to the average 
over 1995–2014, for all five priority scenarios. The unconstrained CMIP6 5–95% ranges (coloured bars) in (a) differ slightly because different authors used different 
subsamples of the CMIP6 archive. The constrained CMIP6 5–95% ranges (coloured bars) in (b) are smaller than the unconstrained ranges in (a) and differ because of 
different samples from the CMIP6 archive and because different observations and methods are used. In (c), the average of the ranges in (b) is formed (grey bars). Green bars in 
(c) show the emulator ranges, defined such that the best estimate, lower bound of the very likely range, and upper bound of the very likely range of climate feedback parameter 
and ocean heat uptake coefficient take the values that map onto the corresponding values of ECS and TCR of Section 7.5 (see Box 4.1). The time series in (d) are constructed 
by taking the average of the constrained CMIP6 ranges and the emulator ranges. The y-axes on the right-hand side are shifted upward by 0.85°C, the central estimate of the 
observed warming for 1995–2014, relative to 1850–1900 (Cross-Chapter Box 2.3, Table 1). Further details on data sources and processing are available in the chapter data 
table (Table 4.SM.1).

Fig 4.11 from IPCC AR6 (2021)
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But... How about the pattern?

Turns out that... 0 2 4 6 8
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in the Indo-Pacific Ocean and delayed warming in both the eastern Pacific Ocean and the Southern Ocean (e.g., 
Dong et al., 2020, 2019; Silvers et al., 2018; Zhou et al., 2016).

The historical pattern effect that leads to lower values of EffCShis may partially result from various non-CO2 
forcing agents that have operated in the historical period (e.g., Forster,  2016; Marvel et  al.,  2016). Gregory 
et al. (2020) suggest that volcanic forcing may bias estimate of EffCS from CO2 quadrupling by causing different 
surface warming patterns in CMIP5 models. Winton et al. (2020) find that a large portion of the EffCShis under-
estimate in GFDL-CM4 is attributable to its large efficacy of aerosol forcing. To test this possibility within other 
CMIP6 models, we make use of the DAMIP non-GHG forcing simulations, namely, hist-aer and hist-nat (Figure 
S2 in Supporting Information S1). Within all but one model, natural forcing alone produces even lower values of 
EffCShis than those from historical simulations (i.e., a larger historical pattern effect). In comparison, when forced 
by anthropogenic aerosol forcing alone, four models show a larger historical pattern effect while three models 
show a reduced pattern effect. These results suggest that non-GHG forcing may largely account for the historical 
pattern effect, though the impact of aerosol forcing is less robust across models.

Figure 2. Historical and equilibrium SST trend patterns. Annual-mean SST linear trends over (a) 1870–2014, (b) 1979–2014, and (c) 150 years of abrupt-4xCO2 
simulations. The observed SST trend patterns in (a), (b) are calculated using AMIPII dataset (Hurrell et al., 2008). Note that the color scales in (a) and (b and c) are 
different.
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pattern

• The observed pattern of warming is very different from that expected / simulated by models,

• What causes this pattern: forced response? (low-frequency) variability?
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© Kyle Armour

Models miss the recent
SST trend.

ECS vs historical
warming relationship
potentially wrong.

How does the pattern effect impact future warming?
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EBM response to historical and RCP8.5 
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EBM response to historical and RCP8.5 
forcing with EffCS = 2ºC over 1981-2020 and 
returning to CMIP5/6 EffCS values by 2060
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SST trend pattern since 
~1980 continues 

indefinitely
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Pattern effect Workshop, May 10–13, 2022
https://usclivar.org/meetings/pattern-effect-workshop-agenda
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Outline

1. Review of constraints

2. Historical warming and TCR

3. Statistical syntheses
a. Sherwood et al. (2020)
b. IPCC AR6

4. Conclusion
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An Assessment of Earth's Climate Sensitivity Using
Multiple Lines of Evidence
S. C. Sherwood1 , M. J. Webb2 , J. D. Annan3, K. C. Armour4 , P. M. Forster5 ,
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Abstract We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of
atmospheric CO2, characterized by an effective sensitivity S. This evidence includes feedback process
understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is
difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last
Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of
evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to
produce a probability density function (PDF) for S given all the evidence, including tests of robustness
to difficult‐to‐quantify uncertainties and different priors. The 66% range is 2.6–3.9 K for our Baseline
calculation and remains within 2.3–4.5 K under the robustness tests; corresponding 5–95% ranges are
2.3–4.7 K, bounded by 2.0–5.7 K (although such high‐confidence ranges should be regarded more
cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the
low end of the range. This narrowing occurs because the three lines of evidence agree and are
judged to be largely independent and because of greater confidence in understanding feedback processes
and in combining evidence. We identify promising avenues for further narrowing the range in S, in
particular using comprehensive models and process understanding to address limitations in the
traditional forcing‐feedback paradigm for interpreting past changes.

Plain Language Summary Earth's global “climate sensitivity” is a fundamental quantitative
measure of the susceptibility of Earth's climate to human influence. A landmark report in 1979
concluded that it probably lies between 1.5°C and 4.5°C per doubling of atmospheric carbon dioxide,
assuming that other influences on climate remain unchanged. In the 40 years since, it has appeared difficult
to reduce this uncertainty range. In this report we thoroughly assess all lines of evidence including some
new developments. We find that a large volume of consistent evidence now points to a more confident view
of a climate sensitivity near the middle or upper part of this range. In particular, it now appears
extremely unlikely that the climate sensitivity could be low enough to avoid substantial climate change (well
in excess of 2°C warming) under a high‐emission future scenario. We remain unable to rule out that the
sensitivity could be above 4.5°C per doubling of carbon dioxide levels, although this is not likely. Continued

©2020. American Geophysical Union.
All Rights Reserved.
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How does it work?

Lines of evidence:

• Process understanding, Eproc (blue)

• Historical warming, Ehist (orange)

• Paleo records, Epaleo (red)

p(λ|E) ∝ p(λ|Eproc)p(Ehist |λ)p(Epaleo|λ)

Somehow: take the intersection of all lines of evidence.

example, has long been expected to be climate sensitive (Budyko, 1969;
Sellers, 1969), and some studies have found strong sensitivity of cloud
feedbacks (Caballero & Huber, 2013). The simplest parameterization of
this is to add a quadratic dependence of net outgoing radiation on ΔT,
which yields a linear dependence of total feedback λ:

Δλstate ¼ 2 α ΔT

There are, however, reasons to expect changes could be nonlinear (e.g.,
discontinuous changes in cloud feedbacks when ice sheets disappear) so
this formulation will not always be used (see section 5). State dependence
corrections are made only for paleoclimate evidence, and state depen-
dence of ΔF2xCO2 is subsumed into that of λ.

Pattern effects. The second term represents the “pattern effect” and
expresses the possibility that different patterns of warming will trigger
different radiative responses. The pattern effect is significant whenever
(a) the pattern of temperature change differs from that in the reference
scenario and (b) this difference in pattern is radiatively significant, that
is, alters the global mean TOA net radiation. Such patterns can arise
either due to non‐CO2 forcings, lags in response, or unforced variability.
In section 4.2, the possible existence of a pattern effect arising from

transient warming patterns that do not resemble the eventual equilibrium response is discussed further.
Pattern effects may also complicate the comparison of estimates derived from proxy reconstructions of
past equilibria, if the resulting sea surface temperature (SST) patterns differ from those of the reference
scenario. However, in the absence of reliable reconstructions of past warming patterns and a dearth of
existing literature addressing this, here we do not explicitly consider paleoclimate pattern effects. We note
that the concept of forcing “efficacy” (i.e., Hansen et al., 2005; Marvel et al., 2016; Stap et al., 2019;
Winton et al., 2010), in which one unit of radiative forcing produces a different temperature response
depending on where, geographically, it is applied, can be attributed to a pattern effect (e.g., Rose
et al., 2014) or to a forcing adjustment. Our estimated historical and paleoforcings ΔF will include uncer-
tainties from adjustment/efficacy effects.

Time scale. Finally, we note that any definition of planetary sensitivity depends on the time scale considered.
Our S incorporates only feedbacks acting on time scales of order a century. Traditional ECS allows for more
complete equilibration of the system, albeit with some feedbacks explicitly excluded (see section 2.1). In this
report we assume that ECS and S are related via

ECS ¼ 1þ ζð ÞS: (8)

See section 5.2.3 for more information. Earth system sensitivity (ESS), by contrast, reflects the slower feed-
back processes such as changes to the carbon cycle and land ice. Due to the lack of information on short tem-
poral scales, most paleoclimate reconstructions necessarily incorporate the effects of these slow feedbacks.
The difference between ESS and S or ECS is not relevant to the analyses in sections 3 and 4 but is discussed
further in section 5.3.

2.3. Statistical Method: Summary

To obtain probability distributions of the various quantities introduced and mathematically linked in
section 2.2, we adopt the Bayesian interpretation of probability, which describes our uncertain beliefs con-
cerning facts that are not intrinsically random but about which our knowledge is uncertain (e.g.,
Bernardo & Smith, 1994). The Bayesian approach has been adopted in many past studies inferring climate-
sensitivity from historical or paleoclimate data (see sections 4 and 5) and is used for other climate‐relevant
problems such as data assimilation (Law& Stuart, 2012), remote sensing (Evans et al., 1995), and reconstruc-
tion of past temperatures (Tingley & Huybers, 2010), among others.

Figure 2. A Bayesian network diagram showing the dependence
relationships between main variables in the inference model. Circles
show uncertain variables, whose PDFs are estimated; squares show
evidence (random effects on the evidence would appear as a second
“parent” variable for each square and are omitted for simplicity). Colors
distinguish the three main lines of evidence and associated variables
(blue = process, orange = historical, and red = paleoclimate). For
paleoclimate, only one ΔF/ΔT climate change pair is shown but two
independent ones are considered (see section 5).
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Process understanding

Quantify knowledge about each λi and ∆F2xCO2
:

• CO2 radiative forcing: ∆F2xCO2
,

and the associated radiative adjustments

• Planck feedback: λPlanck ,

• Water vapor and lapse rate: λwv+lr ,

• Surface albedo feedback: λa,

• Stratospheric feedback: λstrat ,

• Other feedbacks (chemistry, aerosols): λother ,

• Clouds !!

The cloud feedback is decomposed into:

• High-cloud altitude feedback

• Tropical anvil cloud area feedback

• Tropical marine low-cloud feedbcak

• Midlatitude marine low-cloud feedback

• High-latitude low-cloud optical depth feedback

• Land cloud feeback

low‐cloud feedback is large and well correlated with intermodel spread in
S (Bony & Dufresne, 2005; Vial et al., 2013). However, a combination of
process‐resolving modeling and new observational analysis is leading to
a better understanding and quantification of the most important cloud
response mechanisms, leading to increasing confidence that this regime
contributes to positive global cloud feedback.

The feedback of low clouds is almost exclusively via SW radiation because
they have a small effect on TOA LW radiation. Figure 5e shows that most
GCMs simulate positive low‐cloud feedbacks throughout low latitudes
(30°S to 30°N), which are especially strong in the deep tropics (10°S to
10°N) and are almost exclusively due to reduced cloud amount in a war-
mer climate. As will be discussed in section 3.3.5, GCMs also simulate
positive low‐cloud feedback in midlatitudes (30–50° latitude), where the
mechanisms controlling low cloud are likely similar but quantitatively
less well constrained. Despite the general agreement among GCMs in
the sign of the feedback, the large intermodel spread has motivated major
efforts to use other lines of evidence, namely, process‐resolving models
and observations, to infer the tropical low‐cloud feedback.

Bretherton (2015) reviews results from LES of low‐latitude marine cloud‐topped boundary layers in
present‐day versus perturbed climates. This work suggests that four main mechanisms affect the cloud
response on climate time scales. These are (1) cloud reduction due to thermodynamic effects of overall warm-
ing of the atmosphere‐ocean column, including the associated increase in specific humidity; (2) stratocumu-
lus cloud reduction due to the direct effect of CO2 increases on boundary layer radiative cooling, an important
process for stirring up cloud‐forming turbulence (note this contributes to rapid adjustment to CO2 (sec-
tion 3.2.1), and not the temperature‐mediated feedback that we are trying to determine here); (3) increases
in the stratification between the boundary layer and overlying free troposphere, favoring more cloud; and
(4) reductions in themean subsidence rate, which favormore cloud by keeping the cloud layer from shoaling.
Other possible forcings, such as changes in free‐tropospheric relative humidity and surface wind speed, may
be important for regional cloud response to climate change but seem to be secondary to global cloud feedback.
LES for the expected globalwarming environment typically predicts less low cloud, hence positive cloud feed-
back. This happens because the warming‐induced reduction in low cloud (Mechanism [1]) overwhelms the

increases from the small changes in expected stratification and subsidence
(Mechanisms [3] and [4]).

The cloudy boundary layer responds within hours to days to changes in
the overlying atmosphere or underlying ocean. Klein et al. (2017) review
a series of observational analyses that have tried to quantify the sensitivity
of clouds to each of the “cloud‐controlling factors” associated with the
mechanisms above using satellite observations of natural space‐time
variability on weekly to interannual time scales (Brient &
Schneider, 2016; McCoy et al., 2017; Myers & Norris, 2016; Qu et al., 2015;
Zhai et al., 2015). These studies also establish that in GCMs sensitivities to
these factors are similar for the century time scale climate warming as for
present‐day climate variability. Using the GCM predictions of how the
controlling factors change with climate warming, Klein et al. (2017) find
positive thermodynamic feedback and a smaller, partially compensating
contribution from negative stability feedback; the effects of other possible
cloud‐controlling factors are either small or difficult to observationally
separate from these. They estimate a 90% confidence interval for the local
radiative feedback of low‐latitude marine low clouds of 0.3–
1.7 W m−2 K−1 (Figure 6). They also compare their observational results
to the LES studies reviewed by Bretherton (2015), finding that LES esti-
mate a similar range of positive cloud feedback, with trade cumulus
regimes in the lower half of this range and stratocumulus regimes in the

Figure 6. Local tropical low‐cloud feedbacks from observations, large‐eddy
simulations, and global climate models from Klein et al. (2017). Each dot
represents the feedback from an individual research study. The upper
horizontal bar indicates the central estimate and 90% confidence interval
for the feedback inferred in that study from the observations. The lower bar
indicates the range of feedbacks simulated by global climate models. Note
that our assessment reinterprets the upper horizontal bar into a likelihood
statement assuming a uniform prior and with considering additional
evidence (section 3.3.2).

Figure 7. Assessed values of individual cloud feedbacks and the total cloud
feedback based upon process evidence. For individual cloud feedbacks,
maximum likelihood values are shown by black diamonds and the widths
of blue rectangles, with 2 times the 1‐sigma likelihood values shown by
the width of the black uncertainty bars. For the total cloud feedback, the
mean value of the PDF is shown by a black diamond and the width of the
accompanying blue rectangle, with 2 times the PDF standard deviation
shown by the width of the black uncertainty bar.
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Prior on (S, λ)

Each λi ∼ N(µi , σ
2
i ) ; λ ∼ N

(∑
µi ,
∑
σ2

i

)
.

Dependence between ∆F2xCO2
and λ: neglected.

Constraint on S and/or λ,
(interannual radiation variability and climatology):
discussed but not taken into account (compensates potential
missing feedbacks λi ).

+ Historical evidence

+ Paleoclimate evidence

feedback to 0.0 Wm−2 K−1. The standard deviation of the likelihood func-
tion we assign to 0.10 W m−2 K−1, which allows for additional uncertain-
ties beyond these two studies.

This assessed feedback value is consistent with observational evidence
suggesting that the negative high‐latitude optical depth feedback simu-
lated by many GCMs is too strong, likely due to an exaggerated phase
change feedback. In GCM experiments in which mean‐state supercooled
liquid water content more closely matches observations (Frey &
Kay, 2018; Tan et al., 2016), the negative SW optical depth feedback at
high latitudes is weakened considerably. This negative feedback has also
weakened in some CMIP6 models, possibly related to improvements in
mean‐state cloud phase distribution (Zelinka et al., 2020).

3.4. Process Assessment of λ and Implications for S

Sections 3.2 and 3.3 have assessed the process evidence and assigned a
Gaussian prior for ΔF2xCO2 and Gaussian likelihoods for individual cli-
mate feedbacks. Table 1 records the values of these terms and which lines
of process evidence were used in their derivation.

According to Equation 18, the climate feedback parameter λ is equal to the
linear sum of individual feedbacks. We further assumed that the total
cloud feedback can be written as a linear sum of the individual cloud type
feedbacks we assessed in section 3.3. Linearity of radiative feedbacks has
been established (Colman & McAvaney, 1997; Mauritsen et al., 2013;
M. H. Zhang et al., 1994; Wetherald & Manabe, 1980), although indepen-
dence is another matter (see below). We formulate a Gaussian PDF for
λclouds by adding the standard deviations for the individual cloud feed-
backs in quadrature (assuming independent and uniform λi priors) and,
similarly, formulate a PDF for λ by adding the standard deviations of all
feedbacks in quadrature (cf. Equation 13). Note this manner of combining
feedbacks is valid only for the Baseline prior (see section 2.3). The resulting
PDF for the total cloud feedback is N(+0.45, 0.33) (Table 1 and Figure 7).
Relative to themean cloud radiative effect of around−20Wm−2 in today's
climate (Loeb, Doelling, et al., 2018), a cloud feedback of +0.45Wm−2 K−1

is equivalent to an ~2% decrease in the net radiative effect of clouds for every
K of temperature increase. Interpreting standard deviations as uncertainty, the total cloud feedback has the lar-
gest uncertainty relative to the other feedbacks (Planck, water vapor + lapse rate, surface albedo, atmospheric
composition, and stratospheric), just as it has in past assessments. In addition, quadrature summing of our
assessed values shows that the uncertainty from all high cloud types combined is approximately equal to that
of all low‐cloud types combined, indicating that future research is needed to improve the physical understand-
ing of both high and low clouds.

Our PDF for λ is N(−1.30, 0.44) (Table 1 and Figure 8a). Also assuming the prior on ΔF2xCO2 is independent
from λ, the PDF of S using only process evidence can be derived (Figure 8c). The 50th percentile (median) of
the S PDF occurs at 3.1 K, with the 17th and 83rd percentiles at 2.3 and 4.6 K. The asymmetric shape to the S
PDF results from taking the inverse of the symmetric λ PDF following Equation 4 and the fact that in relative
terms, λ is much more uncertain than ΔF2xCO2 (Roe & Baker, 2007). This implies that shifting the S PDF
downward would require the identification of an unknown negative feedback much larger in magnitude
than the unknown positive feedback that would be required to shift the S PDF upward by an equal amount
(Schlesinger, 1989). Equivalently, the process assessment constrains the lower bound of Smore tightly than
its upper bound.

Onemay question our assumption of independence between ΔF2xCO2 and λ, as well as among likelihoods for
all feedbacks except those for water vapor and lapse rate which we treat together in Table 1. Of particular
importance is a significant anticorrelation between ΔF2xCO2 and λ in GCMs (Andrews, Gregory, Webb,

(a)

(b)

(c)

Figure 8. PDFs and likelihood functions based upon the assessment of
individual climate feedbacks and the emergent constraint literature.
(a) PDF for λ from combining evidence on individual feedbacks using the
Baseline λi prior. (b) Emergent constraint likelihood for λ. Note that this
likelihood is not a PDF. See section 3.6 for an explanation of how the
parameters of this likelihood function were determined and why they differ
from the parameters recorded in Table 2. (c) PDF for S from combining
evidence on ΔF2xCO2 and individual feedbacks using uniform λi priors.
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Synthesis

Via Equation 8 and the PDF on ζ given in section 5.2.3, our calculation pro-
vides a simultaneous calculation of the posterior PDF of ECS, which may
be compared with that of S. For our Baseline case the 5–95% (2.2–4.9 K)
and 66% (2.6–4.1 K) ranges of ECS (Table 11) are slightly wider and
stretched higher than those for S (2.3–4.7 and 2.6–3.9 K, respectively).
This is as expected from the comparison shown in Figure 1 and resulting
distribution of ζ. There is only a modest increase in the widths of the
ECS PDFs compared to those for S, presumably because the paleo evidence
more directly constrains ECS, while other evidence more directly con-
strains S. Under our uniform‐S prior, however, the 66% range for ECS
(2.7–4.6 K) expands slightly compared to that for S (2.8–4.5 K) but does
not shift upward, while the 5–95% range for ECS (2.3–5.6 K) is shifted
slightly toward lower values than for S (2.4–5.7 K). This counterintuitive
result may be due to the a priori correlation structure implicitly required
to reconcile the physical model (section 2.2) with a uniform prior probabil-
ity of S: Because ζ is uncertain, the strong expectation for high S expressed
by this prior (compared to that of the Baseline prior) combined with the
evidentiary constraints against high S implies that a posteriori ζ has a
strong chance to be negative even though a priori it was expected to be
positive on average (remembering that, in a Bayesian analysis, the PDFs
of all variables are updated when evidence is considered). Because of this,
the bounds from reasonable sensitivity tests we obtain for ECS are slightly
smaller than those for S.

For other quantities (TCR and future warming), we obtained approximate PDFs from their fits to S, broa-
dened according to the sample spread about this fit. These fits were shown in Figure 1; the resulting PDFs
of warming are shown in Figure 23 for the Baseline case, and ranges are given in Table 11 for other cases.
As the relationship between the different climate sensitivity measures is not well understood (e.g., AR4;

Figure 10.15, Frey et al., 2017; Grose et al., 2018), we choose linear fits.
These linear fits do not extrapolate through the origin for nonequilibrium
scenarios, but this is expected, as the fraction of warming that remains
unrealized (at the end of century in the case of the RCPs, or time of dou-
bling in the case of TCR) will vary with S. Within the range of substantial
probability of S, the relationships do not show any robust nonlinearity, so
none is accounted for.

The 66% range we find for TCR (1.5–2.2 K in the Baseline calculation and
up to 2.4 K otherwise) is much narrower than the IPCC AR5 likely range
of 1.0–2.5 K. However, our assessment of this quantity is very limited and
should be treated with considerable caution, as it comes largely from
sources of information more relevant to S (paleoclimate and atmospheric
process evidence), which is then converted to TCR using coupled climate
models from AR5, rather than a bottom‐up assessment of TCR that prop-
erly accounts for our physical understanding, uncertainties in transient
processes (in particular, ocean processes), and historical changes on
shorter time horizons of greater relevance to TCR. A more thorough
assessment of TCR is set aside for future projects.

For the Baseline case shown, the future‐warming PDFs indicate that the
probability that warming relative to 1995 will exceed 1.4 K (roughly
equivalent to 2 K above preindustrial, Hawkins et al., 2017) by late this
century is 17% under RCP2.6, 83% under RCP4.5, 92% under RCP6.0,
and >99% under RCP8.5. Note that while RCP8.5 has sometimes been pre-
sented as a “business as usual” scenario, it is better viewed as a worst case
(e.g., Hausfather & Peters, 2020). We make no claims here on scenario

Figure 24. PDFs of S in comparison with AR5. The Baseline PDF is shown
in black, and its 66% range (2.6–3.9 K) in gray. Colored curves show
PDFs from sensitivity tests which cover a range for S, which could plausibly
arise given reasonable alternative assumptions or interpretations of the
evidence, summarized by the magenta line (2.3–4.5 K). These are the
Baseline case but with a uniform S prior (red), the Baseline without the
Historical evidence (orange), and the Baseline case without the cold
paleoclimate evidence (blue). The 66%‐or‐greater (“likely”) range from the
most recent IPCC assessment (AR5) (1.5–4.5 K) is shown in cyan. Circles
indicate 17th and 83rd percentile values.

Figure 23. PDFs of the warming by late this century, from our Baseline
PDF of S. These warming PDFs are obtained by converting S to warming
using the best linear fit and then convolving the induced PDF with
Gaussian uncertainty, as shown by the shading in Figure 1b. Results from
RCP6.0 employ data from Forster et al. (2013). Note that the warming is
calculated relative to 1985–2005; approximate warming relative to
preindustrial is shown at the top, based on 0.6‐K warming having occurred
by 1985–2005. Warming was estimated using the difference of 20‐year
means centered on the years 1995 or 2089.
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“the paleoclimate record (in particular, the LGM)
now provides the strongest evidence against
very high S”

“all lines provide more similar constraints against
low S (paleo slightly less than the others)”

Still, the choice of the prior matters.

p(λ|E) ∝ p(λ|Eproc)p(Ehist |λ)p(Epaleo|λ)
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IPCC AR6

Another synthesis (more qualitative)

“[Synthesis] can be done formally using
Bayesian statistics, though such a process
is complex and involves formulating likeli-
hoods and priors”
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advances include increased understanding of how the pattern effect 
influences ECS inferred from historical global warming (Sections 7.4.4 
and 7.5.3), improved quantification of paleo climatechange from proxy 
evidence and a deepened understanding of how feedback mechanisms 
increase ECS in warmer climate states (Sections 7.4.3, 7.4.4 and 7.5.4), 
and also an improved quantification of individual cloud feedbacks 
(Sections 7.4.2 and 7.5.4.2). The assessment findings for ECS and TCR 
are summarized in Table 7.13 and Table 7.14, respectively, and also 
visualized in Figure 7.18.

The AR5 assessed ECS to have a  likely range from 1.5 to 4.5 °C 
(M. Collins et al., 2013) based on the majority of studies and evidence 
available at the time. The broader evidence base presented in this 
Report and the general agreement among different lines of evidence 
means that they can be combined to yield a narrower range of ECS 
values. This can be done formally using Bayesian statistics, though 
such a  process is complex and involves formulating likelihoods 
and priors (Annan and Hargreaves, 2006; Stevens et  al., 2016; 
Sherwood et al., 2020). However, it can be understood that if two 
lines of independent evidence each give a  low probability of an 
outcome being true, for example, that ECS is less than 2.0°C, then 
the combined probability that ECS is less than 2.0°C is lower than 
that of either line of evidence. On the contrary, if one line of evidence 
is unable to rule out an outcome, but another is able to assign a low 
probability, then there is a low probability that the outcome is true 
(Stevens et al., 2016). This general principle applies even when there 
is some dependency between the lines of evidence (Sherwood et al., 
2020), for instance between historical energy budget constraints 
(Section  7.5.2.1) and those emergent constraints that use the 
historically observed global warming (Section 7.5.4.1). Even in this 
case the combined constraint will be closer to the narrowest range 
associated with the individual lines of evidence.

In the process of providing a  combined and self-consistent ECS 
assessment across all lines of evidence, the above principles were all 

considered. As in earlier reports, a 0.5°C precision is used. Starting 
with the very likely lower bound, there is broad support for a value of 
2.0°C, including process understanding and the instrumental record 
(Table 7.13). For the very likely upper bound, emergent constraints 
give a  value of 5.0°C whereas the three other lines of evidence 
are individually less tightly constrained. Nevertheless, emergent 
constraints are a relatively recent field of research, in part taken into 
account by adding uncertainty to the upper bound (Section 7.5.4.3), 
and the underlying studies use, to a varying extent, information that 
is also used in the other three lines of evidence, causing statistical 
dependencies. However, omitting emergent constraints and 
statistically combining the remaining lines of evidence likewise yields 
95th percentiles close to 5.0°C (Sherwood et al., 2020). Information 
for the likely range is partly missing or one-sided, however it must 
necessarily reside inside the very likely range and is therefore 
supported by evidence pertaining to both the likely and very likely 
ranges. Hence, the upper likely bound is assessed to be about halfway 
between the best estimate and the upper very likely bound while 
the lower likely bound is assessed to be about halfway between the 
best estimate and the lower very likely bound. In summary, based on 
multiple lines of evidence the best estimate of ECS is 3°C, it is likely 
within the range 2.5 to 4 °C and very likely within the range 2 to 5 °C. 
It is virtually certain that ECS is larger than 1.5°C. Whereas there is 
high confidence based on mounting evidence that supports the best 
estimate, likely range and very likely lower end, a higher ECS than 
5°C cannot be ruled out, hence there is medium confidence in the 
upper end of the very likely range. Note that the best estimate of ECS 
made here corresponds to a feedback parameter of –1.3 W m–2 °C–1 
which is slightly more negative than the feedback parameter from 
process-based evidence alone that is assessed in Section 7.4.2.7.

There has long been a consensus (Charney et al., 1979) supporting an 
ECS estimate of 1.5°C–4.5°C. In this regard it is worth remembering 
the many debates challenging an ECS of this magnitude. These started 
as early as Ångström (1900) criticizing the results of Arrhenius (1896) 

(a) Equilibrium climate sensitivity  estimates (ºC) (b) Transient climate response estimates (ºC) 
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Process understanding

Instrumental record

Paleoclimates

Emergent constraints
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CMIP6 ESMs
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0 1 2 3 4
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Figure 7.18 | Summary of the equilibrium climate sensitivity (ECS panel (a)) and transient climate response (TCR panel (b)) assessments using different 
lines of evidence. Assessed ranges are taken from Tables 7.13 and 7.14 for ECS and TCR respectively. Note that for the ECS assessment based on both the instrumental record 
and paleoclimates, limits (i.e., one-sided distributions) are given, which have twice the probability of being outside the maximum/minimum value at a given end, compared to 
ranges (i.e., two-tailed distributions) which are given for the other lines of evidence. For example, the extremely likely limit of greater than 95% probability corresponds to one 
side of the very likely (5–95%) range. Best estimates are given as either a single number or by a range represented by a grey box. CMIP6 model values are not directly used 
as a line of evidence but presented on the Figure for comparison. ECS values are taken from Schlund et al. (2020) and TCR values from Meehl et al. (2020); see Supplementary 
Material 7.SM.4. Further details on data sources and processing are available in the chapter data table (Table 7.SM.14).
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arguing that the atmosphere was already saturated in infrared 
absorption such that adding more CO2 would not lead to warming. 
The assertion of Ångström was understood half a century later to be 
incorrect. History has seen a multitude of studies (e.g., Svensmark, 
1998; Lindzen et  al., 2001; Schwartz, 2007) mostly implying lower 
ECS than the range assessed as very likely here. However, there are 
also examples of the opposite, such as very large ECS estimates based 
on the Pleistocene records (Snyder, 2016), which have been shown to 
be overestimated due to a lack of accounting for orbital forcing and 
long-term ice-sheet feedbacks (Schmidt et al., 2017b), or suggestions 
that global climate instabilities may occur in the future (Steffen et al., 
2018; Schneider et  al., 2019). There is, however, no evidence for 
unforced instabilities of such magnitude occurring in the paleo-record 
temperatures of the past 65 million years (Westerhold et al., 2020), 
possibly short of the Paleocene–Eocene Thermal Maximum (PETM) 
excursion (Section 5.3.1.1) that occurred at more than 10°C above 
present-day levels (Anagnostou et  al., 2020). Looking back, the 
resulting debates have led to a deeper understanding, strengthened 
the consensus, and have been scientifically valuable.

In the climate sciences, there are often good reasons to consider 
representing deep uncertainty, or what are sometimes referred to as 
‘unknown unknowns’. This is natural in a field that considers a system 
that is both complex and at the same time challenging to observe. 
For instance, since emergent constraints represent a  relatively new 
line of evidence, important feedback mechanisms may be biased 
in process-level understanding; pattern effects and aerosol cooling 
may be large; and paleo evidence inherently builds on indirect and 
incomplete evidence of past climate states, there certainly can be 
valid reasons to add uncertainty to the ranges assessed on individual 
lines of evidence. This has indeed been addressed throughout 
Sections  7.5.1–7.5.4. Since it is neither probable that all lines of 
evidence assessed here are collectively biased nor is the assessment 
sensitive to single lines of evidence, deep uncertainty is not considered 
as necessary to frame the combined assessment of ECS.

The evidence for TCR is less abundant than for ECS, and focuses 
on the instrumental temperature record (Sections 7.5.2 and 7.5.6), 
emergent constraints (Section  7.5.4.3) and process understanding 
(Section  7.5.1). The AR5 assessed a  likely range for TCR of 1.0  to 
2.5  °C. TCR and ECS are related, though, and in any case TCR is 

less than ECS (see the introduction to Section  7.5). Furthermore, 
estimates of TCR from the historical record are not as strongly 
influenced by externally forced surface temperature pattern effects 
as estimates of ECS are since both historical transient warming and 
TCR are affected by this phenomenon (Section  7.4.4). A  slightly 
higher weight is given to instrumental record warming and emergent 
constraints since these are based on observed transient warming, 
whereas the process-understanding estimate relies on pattern 
effects and ocean heat uptake efficiency from ESMs to represent 
the transient dampening effects of the ocean. If these effects are 
underestimated by ESMs then the resulting TCR would be lower. 
Given the interdependencies of the other two lines of evidence, 
a  conservative approach to combining them as reflected in the 
assessment is adopted. Since uncertainty is substantially lower than 
in AR5 a 0.1°C precision is therefore used here. Otherwise the same 
methodology for combining the lines of evidence as applied to ECS 
is used for TCR. Based on process understanding, warming over the 
instrumental record and emergent constraints, the best estimate TCR 
is 1.8°C, it is likely 1.4 to 2.2 °C and very likely 1.2 to 2.4 °C. The 
assessed ranges are all assigned high confidence due to the high 
level of agreement among the lines of evidence.

7.5.6 Considerations on the ECS and TCR in Global 
Climate Models and Their Role in the Assessment

Coupled climate models, such as those participating in CMIP, have 
long played a central role in assessments of ECS and TCR. In reports 
up to and including the IPCC Third Assessment Report (TAR), climate 
sensitivities derived directly from ESMs were the primary line of 
evidence. However, since AR4, historical warming and paleoclimate 
information provided useful additional evidence and it was noted 
that assessments based on models alone were problematic (Knutti, 
2010). As new lines of evidence have evolved, in AR6 various 
numerical models are used where they are considered accurate, or 
in some cases the only available source of information, and thereby 
support all four lines of evidence (Sections 7.5.1–7.5.4). However, 
AR6 differs from previous IPCC reports in excluding direct estimates 
of ECS and TCR from ESMs in the assessed ranges (Section 7.5.5), 
following several recent studies (Annan and Hargreaves, 2006; 
Stevens et  al., 2016; Sherwood et  al., 2020). The purpose of this 
section is to explain why this approach has been taken and to 
provide a perspective on the interpretation of the climate sensitivities 
exhibited in CMIP6 models.

Table 7.14 | Summary of TCR assessment.

Transient Climate 
Response (TCR)

Central 
Value

Likely Range
Very likely 

Range

Process understanding 
(Section 7.5.1)

2.0°C 1.6°C to 2.7°C 1.3°C to 3.1°C

Warming over instrumental record 
(Section 7.5.2)

1.9°C 1.5°C to 2.3°C 1.3°C to 2.7°C

Emergent constraints 
(Section 7.5.4)

1.7°C – 1.1°C to 2.3°C

Combined assessment 1.8°C 1.4°C to 2.2°C 1.2°C to 2.4°C

Table 7.13 | Summary of equilibrium climate sensitivity (ECS) assessment.

Equilibrium Climate 
Sensitivity (ECS)

Central 
Value

Likely 
Very 
likely 

Extremely 
likely

Process understanding 
(Section 7.5.1)

3.4°C
2.5°C to 

5.1°C
2.1°C to 

7.7°C
–

Warming over instrumental 
record (Section 7.5.2)

2.5°C to 
3.5°C

>2.2°C >1.8°C >1.6°C

Paleoclimates 
(Section 7.5.3)

3.3°C to 
3.4°C

<4.5°C >1.5°C <8°C

Emergent constraints 
(Section 7.5.4)

2.4°C to 
3.3°C

–
1.5°C to 

5.0°C
–

Combined assessment 3°C
2.5°C to 

4.0°C
2.0°C to 

5.0°C
–
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arguing that the atmosphere was already saturated in infrared 
absorption such that adding more CO2 would not lead to warming. 
The assertion of Ångström was understood half a century later to be 
incorrect. History has seen a multitude of studies (e.g., Svensmark, 
1998; Lindzen et  al., 2001; Schwartz, 2007) mostly implying lower 
ECS than the range assessed as very likely here. However, there are 
also examples of the opposite, such as very large ECS estimates based 
on the Pleistocene records (Snyder, 2016), which have been shown to 
be overestimated due to a lack of accounting for orbital forcing and 
long-term ice-sheet feedbacks (Schmidt et al., 2017b), or suggestions 
that global climate instabilities may occur in the future (Steffen et al., 
2018; Schneider et  al., 2019). There is, however, no evidence for 
unforced instabilities of such magnitude occurring in the paleo-record 
temperatures of the past 65 million years (Westerhold et al., 2020), 
possibly short of the Paleocene–Eocene Thermal Maximum (PETM) 
excursion (Section 5.3.1.1) that occurred at more than 10°C above 
present-day levels (Anagnostou et  al., 2020). Looking back, the 
resulting debates have led to a deeper understanding, strengthened 
the consensus, and have been scientifically valuable.

In the climate sciences, there are often good reasons to consider 
representing deep uncertainty, or what are sometimes referred to as 
‘unknown unknowns’. This is natural in a field that considers a system 
that is both complex and at the same time challenging to observe. 
For instance, since emergent constraints represent a  relatively new 
line of evidence, important feedback mechanisms may be biased 
in process-level understanding; pattern effects and aerosol cooling 
may be large; and paleo evidence inherently builds on indirect and 
incomplete evidence of past climate states, there certainly can be 
valid reasons to add uncertainty to the ranges assessed on individual 
lines of evidence. This has indeed been addressed throughout 
Sections  7.5.1–7.5.4. Since it is neither probable that all lines of 
evidence assessed here are collectively biased nor is the assessment 
sensitive to single lines of evidence, deep uncertainty is not considered 
as necessary to frame the combined assessment of ECS.

The evidence for TCR is less abundant than for ECS, and focuses 
on the instrumental temperature record (Sections 7.5.2 and 7.5.6), 
emergent constraints (Section  7.5.4.3) and process understanding 
(Section  7.5.1). The AR5 assessed a  likely range for TCR of 1.0  to 
2.5  °C. TCR and ECS are related, though, and in any case TCR is 

less than ECS (see the introduction to Section  7.5). Furthermore, 
estimates of TCR from the historical record are not as strongly 
influenced by externally forced surface temperature pattern effects 
as estimates of ECS are since both historical transient warming and 
TCR are affected by this phenomenon (Section  7.4.4). A  slightly 
higher weight is given to instrumental record warming and emergent 
constraints since these are based on observed transient warming, 
whereas the process-understanding estimate relies on pattern 
effects and ocean heat uptake efficiency from ESMs to represent 
the transient dampening effects of the ocean. If these effects are 
underestimated by ESMs then the resulting TCR would be lower. 
Given the interdependencies of the other two lines of evidence, 
a  conservative approach to combining them as reflected in the 
assessment is adopted. Since uncertainty is substantially lower than 
in AR5 a 0.1°C precision is therefore used here. Otherwise the same 
methodology for combining the lines of evidence as applied to ECS 
is used for TCR. Based on process understanding, warming over the 
instrumental record and emergent constraints, the best estimate TCR 
is 1.8°C, it is likely 1.4 to 2.2 °C and very likely 1.2 to 2.4 °C. The 
assessed ranges are all assigned high confidence due to the high 
level of agreement among the lines of evidence.

7.5.6 Considerations on the ECS and TCR in Global 
Climate Models and Their Role in the Assessment

Coupled climate models, such as those participating in CMIP, have 
long played a central role in assessments of ECS and TCR. In reports 
up to and including the IPCC Third Assessment Report (TAR), climate 
sensitivities derived directly from ESMs were the primary line of 
evidence. However, since AR4, historical warming and paleoclimate 
information provided useful additional evidence and it was noted 
that assessments based on models alone were problematic (Knutti, 
2010). As new lines of evidence have evolved, in AR6 various 
numerical models are used where they are considered accurate, or 
in some cases the only available source of information, and thereby 
support all four lines of evidence (Sections 7.5.1–7.5.4). However, 
AR6 differs from previous IPCC reports in excluding direct estimates 
of ECS and TCR from ESMs in the assessed ranges (Section 7.5.5), 
following several recent studies (Annan and Hargreaves, 2006; 
Stevens et  al., 2016; Sherwood et  al., 2020). The purpose of this 
section is to explain why this approach has been taken and to 
provide a perspective on the interpretation of the climate sensitivities 
exhibited in CMIP6 models.

Table 7.14 | Summary of TCR assessment.

Transient Climate 
Response (TCR)

Central 
Value

Likely Range
Very likely 

Range

Process understanding 
(Section 7.5.1)

2.0°C 1.6°C to 2.7°C 1.3°C to 3.1°C

Warming over instrumental record 
(Section 7.5.2)

1.9°C 1.5°C to 2.3°C 1.3°C to 2.7°C

Emergent constraints 
(Section 7.5.4)

1.7°C – 1.1°C to 2.3°C

Combined assessment 1.8°C 1.4°C to 2.2°C 1.2°C to 2.4°C

Table 7.13 | Summary of equilibrium climate sensitivity (ECS) assessment.

Equilibrium Climate 
Sensitivity (ECS)

Central 
Value

Likely 
Very 
likely 

Extremely 
likely

Process understanding 
(Section 7.5.1)

3.4°C
2.5°C to 

5.1°C
2.1°C to 

7.7°C
–

Warming over instrumental 
record (Section 7.5.2)

2.5°C to 
3.5°C

>2.2°C >1.8°C >1.6°C

Paleoclimates 
(Section 7.5.3)

3.3°C to 
3.4°C

<4.5°C >1.5°C <8°C

Emergent constraints 
(Section 7.5.4)

2.4°C to 
3.3°C

–
1.5°C to 

5.0°C
–

Combined assessment 3°C
2.5°C to 

4.0°C
2.0°C to 

5.0°C
–
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• Statistical constraints contribute to knowledge of climate sensitivity.

• Constraint from historical (recent) warming is important... And expected to strengthen.

• Need of statistical methods (uncertainty quantification, sophisticated constraints, synthesis...).

• Key remaining issues include:
• Limitation of the CMIP ensemble. Use PPEs? (Perturbed Physics Ensembles)

• Pattern effect. Revise the role of internal variability?

Few personal thoughts: ECS has received very much attention, but...

• Highly idealized experiment
Keeping constant [CO2] on the long-term seems very unlikely

• Does not describe the response of the system that well...
Transient resp., local resp. (pattern), extreme events, water cycle, carbon cycle (e.g. emissions based), etc

• Many other features to infer / monitor – come to the workshop.
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